Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Table of Contents
minLevel2
maxLevel2
typeflat

Overview

Check the list of available endpoints and methods in the model manager management API:

Endpoints and methods

Description

Status
colourYellow
titleGET
 /models/{name} see below

Get detailed information about a model.

Status
colourBlue
titlePUT
/models/{name} see below

Replace the data of an existing model.

Status
colourGreen
titlePOST
/models/{name} see below

Create a new model.

Status
colourRed
titleDELETE
 /models/{name} see below

Delete a model.

Status
colourGreen
titlePATCH
/models/{name} see below

Update an existing model.

Status
colourYellow
titleGET
/models/{name} see below

List the available models in the current domain.

Status
colourYellow
titleGET
/images/{name} see below

Get the binary image of a model.

Endpoints and methods

Anchor
path1
path1
GET /models/{name}

Get detailed information about a model.

Note

In order to work with Model Management you need to activate Machine Learning permissions in your role. Go to Administration → Roles → Permissions → Machine Learning and activate the view and manage permissions in Models.

Learn more about roles and permissions in Role permissions.

Expand
titleRequest

Path parameters

Add the following path parameters as part of the endpoint:

Parameter

Type

Description

name required

string

Enter the name of the model you want to get information about.

Query string parameters

Query string parameters are optionally added after the path parameters, preceded by a question mark (?) and separated by an ampersand (&)

Parameter

Type

Description

fast

boolean

If it is true, it does not show the model image in details.

Default value is -.

Example

Find below a request example in cURL language:

Code Block
curl -X 'GET' \
  'https://api.stage.devo.com/mlmodelmanager/v3/models/fresh%20model' \
  -H 'accept: application/json' \
  -H 'standAloneToken: cc81f6f5c73634002183d80b1fb736ecYOUR-TOKEN'
Expand
titleResponse

Code

Description

200

Returns the retrieved model.

Code Block
{
  "id": 24,
  "name": "fresh model",
  "engine": "H2O",
  "location": "domains/self/2f3ae14a-d405-4a2e-b6c8-8693be5c85fd123456",
  "description": "fresh",
  "updateDate": 1683723909000,
  "creationDate": 1683723625000,
  "domainName": "self",
  "outputType": "float8",
  "image": {
    "image": "UEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAARAAAAdHJlZXMvdDAwXzAwMC5iaW5jYGJgnbSkyy7dgIGBlYFBw/EBq+JeBiYGFvWyajtNEOPoKgs7gQ+MDKy/fCUcgnWFbOW0ym0/gFV7gFUvuZVqy8DAwMLAsMZR4AOYUeG4IFLa9uDNO3tAGp+aJoE1csaWQxV6OJoagBkWMPtYb1gfAFvD0mrv4SA0o3jP1lm7rUD8Y3rxDncnnt6T2cNsC1JoZLoJ6DCw7j0I+y6xt9ocfPMBbN8dx0wHhy97baJf50Hty3AEG52S5+ug77dpj9jFz7shGo84Xvjyc8/b9MU2AFBLBwiiWWKd0QAAAAkBAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABUAAAB0cmVlcy90MDBfMDAwX2F1eC5iaW5NkV1Ik1EYx09mNp26qRlzFsQQMT9y2TQt936dc94lDAq0iKIQw8BQahAWRY6YkRmkMLFvW7nMLpJMKC12mBl+kEYXleDHRVFGF6UXJZMu7Hlf31d64M+B8/tz/s/zHIQQMoDQ7wwXCl5w5V2a5Q6ZW1niVIjKNWN0DaAokHKq1dRL0VCi66BrjP3qMPHKle/rCNkK59r/hBaXZCRco7U/Unnh3TC3P5BJGiolEgNoPShGf9PcJ6PxBHnWY+Wv18fx4ZpOqWPWSIyA4kFGPRcJIoo8k7v7n3Pl56yQaxZOnb4r5QDJ1bwrJWI0Gicr/XV1m/iZ/sHC5v5BnAdkm5at5rZ6KArnkFJ/H3fYm8Z3W4vJxMcOIQFQIihBf27hOEUoGxvsr7k0QzOrrrYRnveL+YDsmne1v3AWUfrLvLXS37xzmd8OpEDbYbRiu13gQsntsvfvADuT0Rva2PWQ1PNeqrB1ukepsnQXan1JlTkqxCymXO3q8ZFs7b8M+hz2fIoWKL3Z5A/Zv5xnTYMWIrwYxiZltSCT/l5ggKBwkBh5Czt28USpzXYF+6z38A5ADs2rlpnCvJViRX0D850Mcm0xQ7huukgoBFSk9aj+7+gc7K9Yrr285Jx6f4RZ/HMEf/hEYgHFgWL1/sITFAl7SJW7xfntQDwfdX+cREfsUhKgZFCSnmsJUhToIsNlmVzE385ykx+Qxumf0k5AxZpXG0RCgoPs89RxaeWpsOd2MfVto1ii7EfLVnPPvqHI8ITO7E1ni4/bmHu+hVzFyzgF0AZQyur/lsO8hfTV56Osp+pGKOD+gycdm8luQKWaV63II/DZcFTJHfZddHNbnk7iEc8myQmIA/0DUEsHCK74UgyGAgAASAMAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAEQAAAHRyZWVzL3QwMF8wMDEuYmluY2BiYJ20pMsu3YCBgZWBQcNxw2uBvQxMDCxvjmTZaYIYc0Ms7AQ+MDKw/vKVcDDqZ7bdUhRn+wGsOgCsevf9CFsGBgYWBoYljgIfwIwKx8s54rZC367vAWl8aprk4PlcyfakSgJUoYejqQGYYQGzj/WG9QGwNSyt9h4O/DbRe75fX2EF4rMdCnHY37N3z/c4oT0ghasa5wMdBpT4sjPBAW7fg2IfG8PXrHsh/DWOTFeu2XC2htuCFC67VABT2OLIsjx1j24O816ID/Y4fvvaYG32zd8WAFBLBwgBG+x01gAAAAkBAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABUAAAB0cmVlcy90MDBfMDAxX2F1eC5iaW5Nkl1Ik2EUx8/8nG5utvkRWRdJSCtLU6tZ7v16nmdTiqI0sMAUIejCQUwjvJDUQmYmLAhB1DQa2UVWapkf7EWLXJB9EATDJENKqov0Ik1vXOfd3kkH/jzw/v6c/3nO+wAAaFHwZ5cDvA0O6byfO/WgSb7c3scq9BNMgygKpZyhcg8yeGlwdGc9k4skDa98WgQfteAZ/Z8g7rsdYIGZXmj50tFXnNk5QuajrtI4RPEKjvRMHrZDwM/MoOPfjwI/nXlPGu5uJXpESSh9JBcEEdaG7BsuLzcYr+ODQaNQX9cj7UWSrXrDJRL4MMV6cL5PbfGh+WZyNWQfnvvV7FCuMMIAHtMyyxAX3anjO966aHGgSzAgMqIMm/2eoK+YaIt93Mx6i1zKnaNfs++LOUhyVW+4PCJMPqQZd99wG2l6fqlhh1DhB+EAkjx1hzGKrSvPAaYOe3l1v3zH2esz3O6h2+dcTGGxEY9SJRkO8IwzZc9BZ7o84HRbLyY30z2IElSF7pGbw2CZMdl/3bc2WC2vzKdToWSaJCPaoqw30q9vjMKkl96ITZBXkkqLMjNbSfO2XpKPqED1hsuK960kv5dq5KerIz7frwESVZgnHURySJ0x9H/dnQyqKu0/bhZwZLdFnk26ReGRkSUi0qESI/NVnUbfFP3Y/txWPjvOXZo4SWcs9cSEyIwybeZKmHuNBDxB28aFfvnMVpG6fprFw8pEqjf8DGooNKbRJtrCZQ3H8aby42Sxt1MsRHREzQ7v5Sy+v2lyrM0qf7kyxn1+HcO0qXVSCqJUVEqkn95iB4/Aqt1G2erwynzZMg2If6WjiIpUb7hWJWh0k9r8nbaFdQ0/V/tNPPGuQrQh4VD/AFBLBwheglh6igIAAEgDAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABEAAAB0cmVlcy90MDBfMDAyLmJpbmNgYmCdtKTLLt2AgYGVgUHDcUcu014GJgYW9bJqO00Q4+gqCzuBD0CGxBkNu1dPPGxVVjrZfgCr9gCrZlxlZcvAyMC6b16wg8AHIIP5uJMDq6mLDUPGNRugQhYGhhWOoXf5befdcwcpZKks8XbQMABLGIBNgNhtAWYDbWLt0Vtnt+e31J5/aTv2gJzQarET6BawhjWOAhAjKxwjdv+x9nr2bw/IymMXUh0+N263nBpuacsAlRf4gGSs3THjPRCNexxtXNj2LprSbA0AUEsHCM9CmrbLAAAA/AAAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAFQAAAHRyZWVzL3QwMF8wMDJfYXV4LmJpbj2RXUgUURTHj/m568f6tWlBEmlmamXttqbb3taZe2dDi6REinoQTTHJ6sEEpXDLMLEyK3upzKVNoo0yWUSN5mIUZCj6kPVgFj5ZRpphG5gLdnac7Q9/DtzfmfO/cy4AQBgafqfY4OF52+lTbpJZeoLPOZrZ0kA3C0C0Cu2ripp7GLyOsqVqnLza9Y04p/qy31S56SZEQaoDfX1/FiWwtjIWskCMnzrJ54I4mmjNoaFqXqh/ZrRbgpFIqdjwl1yeniK1Mw+ExlmPGIEoEh3hz/V2SOBIYxuTlsjJQwvkR4xOaLhqFNIRZai9K8oTYUgr+e53sWiGKJ8elMVMrFvUbCW3MJBB1hrmOltGjpa/JcO1X8THhktiFCIdOso/zh5LoUSmkuCxQEAT6ZkMF21Su7gV0Ta1V9HgJAVrBnWNuwn7uEg8e86Jun1maxai7eoOlb3IJhuMXpO63t/m+4vr5Zvp3TQ5+hgLRhSCDvbPawEbjBxW/mMdVHPfUfvPLpqGVaNa0fwdBkXhSl9/nZmnzmtNA877dDOiGNWKzhgYzL9krhevZG6v4E0BMTTYm0x3IDKo2cr9KhMlMAZKq5crLd9/5XNu1DB90AWqRRSO1vr3VxOG79tA3XLj7ntjY6TQ7qH5Q/1CLKI4dOz/95hm4HhCEzwdlrkDndz7fIImJa4XjEh2qr0rGhdg8DitKS031z/9SsImBvJyNXsFE5JsNVvJLellEL2B1bWu5bccd3l6VRl1LDuEeER6dLx/nPU6hbYbzLeX0b4puaX3iqmg4gjdhShH7VXUlsAA0sSCD4/4cF2KZejds7zZRr2Qi8iM/gdQSwcIbyWEEHECAAAgAwAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAARAAAAdHJlZXMvdDAwXzAwMy5iaW5jYGJgnbSkyy7dgIGBlYFBw7Hu6Ks9DEwMLG+OZNlpMjAysO6bF+wg8AEo8nKRud1yESPbhBX3bT6AVc9xNG80sr1ja2YLUth9OQyokIGBhYGhxfFq83Gbk96qeyH8FY7yFzlslZ2ACsF8D0c/CMPCUcaAkYHF+ayfA8hioDWsphuW25VNY90LdQjrDesDdgIfgIpa7T0cRC6Y7llQftoSxD+mF+/QuHTqHmOJvzYghUamm8AuZvE9lgFzSIajl2yyjYq83B6Ii/c49q/YaNPx0QDqkAxHsNGuRwMdrswq23OVWXo3iF+7t9xhC8v2Pf2bdW0BUEsHCJ3HW5r0AAAAIgEAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAFQAAAHRyZWVzL3QwMF8wMDNfYXV4LmJpbk2Se0jTURTHr+/3qs0UdeLKaBb4yFeztbvHvXczKCQrwSjZH2KFkpGFGiWGEUpaaRDmIE2mgZpgUmi2X9O0tJihFSSm+SgxtAiLFMno/H7+Bh34cuF+vpxzzzkXIYS8QejXNhOyXjKtXbyHr/ulc8GuuaxG18xcALmC+FOI8g6GnktM+T01XEzOCOavxlvaaDScbv8JeX4xIjTD3F5M4ExNPU4dtBDzm/PUE5AXj505V5YZ8r5vzPs6il2Gp7E9KoM0uncb/AEFgPyddVfeMYQq6cidSaweuoYPtOQZHr91IbGA4kSvEB8kRqTSGq9s+YQPOWbx6ckOQ/hcqm4XoHixtlC39CBDpWeZY7wAuxY/w1alnHZ2NRIJoA0giTOfPQ3qTulfZxfjnrvD3H6vELowY9YmAEoUvULEhTHU0E5zPFpx2+gsHuuxkL4krEsClCzOkO8ZWeJNSHrbWBZcztVWFtkqoqqp46iZuQPyALmLXrQvzIRuPmEZ8lvc/NSqrVNSo93xsoTyu/Jx7oyPeZkJKRYpv49HD+u49CalSl6VqI0BtEnUeh8pFOluUNmfZo73fich/LPQbpBKzCnMJS6WoR+M/T58yrbzvYpz5AbRiKwBIgUkA0md+Rq6KbJbaQidtZUfKVFHbq0gZaH1JAXQHtErxEYG8zPrpyVqThF7Fyfo+0jeeLJODWiv2LPwXwbnGLKrjPm9Q5qFn5FcaYuDFvo4qC8gP5Cv831nbAyZm2jqZ61m0dqKIxzt9FitnAQC2gwKdNZFJxiakrG0pQD8rXnAZl4z05OZI0QDBIve9bkEUtgQ7ZRm4YXoCbzdsmqoi7is1wLSibWFukX98E8fsN7aGdtS4XGu+mMVvWBcJEGAgkFBznxdV6HfZTqgCOVe9fc+/atUUl/1JNEDMoheIRSt4DtnmB7I5goUY7g7fIIUjDXoCCB4EPoHUEsHCArATw/MAgAAmAMAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAEQAAAHRyZWVzL3QwMF8wMDQuYmluY2BiYJ20pMsu3YCBgZWBQcMxwvvyHgYmBhb1smo7TRDj6CoLO4EPjAysv3wlHHJzF9pwGirZfgCr9nDc9Jth70l5CVsGoPy+ecEOYIXptvoOzv/69nAazbD5ADR/o3CT3fGdR2yY7wmCFLJUlng7aADtY2FgMADbB7HbAsz+ABavcJw2LXqP0+nPYLe0WuwEugWos8E4A2gFVEVA4kZrj2dH90DcssXxJU+NDec2GVsGqLzAByRjzc259gDdxvK1r8hB7syNPZweV2wAUEsHCDbB5vbMAAAA/AAAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAFQAAAHRyZWVzL3QwMF8wMDRfYXV4LmJpbk2RbUiTURTHj06XUzefJqiVhm+0tBc3m9OU3bbnufeZkamBvVMOg/JbQUkvEJs1ShKbilCWq4xpBb2HguFugSymSAQSSOCHXhDpU8gI+5KdPT6TDvw5cH9/zv9yDgBACgqixS4IXnb9ONBDTqbaecFIHes7c48lIEpExbpSHa8YTBhc2Rk+3t02TmJPf/2P6Sbsmv8Ev//I4LjJijRh0nnQS97P6OhRdwXVIlqD0sZnCm9kmNbLQy+myPDzUUL7HoqV6fNSGqJ0VFo8FxxOWHotRyK7SV1oiqwHwbG3ICCWIClVvSvllCCSKt+vHuRvTZzcPSXVBPxj0hYkW9VsJbdRw8C8jn01WIlQNkiEpjlp0XNF0iMyoPSr81pFcC/TmVA57ySEaJv2OLMbZ6RtSLar3pXvHaHgCNOqhTZydf8o6atNkL41LIlliMzqDpW9hGwu+Ngld50+y3NPSKH+R8P0g66OJSFKRiXF590AF0wfkmN7nmwReexp3/IDalLvlRL3/brDoClN8eUGNig+77UBuhl7hiqlcpYYeM/RPKLjuubbvP5WPy2uryAWROVqtvK/1hwZrBq5ILPW7nlZxE35CQx8l6gOUSpKF9/fAsgA45RlzdX8JH4y8GmOXnxCJQHR2thZ47neWQaOIRocO2b/0nyeV7dM0sR3PnEHIqvqXakSCtBAjR15pPP7BCkMGiXL8aizAolNzVZy3SMMhEI2G10MGbLaeanFTdtHe0UjokyUcfUefgrdPSy2l+Tw09DnsXzbvHSYViKqUr1KmTcygAtir+c61z7zkZSoTYzsMjt3IqpG/QNQSwcIntsW0GgCAAAgAwAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAARAAAAdHJlZXMvdDAwXzAwNS5iaW5jYGJgnbSkyy7dgIGBlYFBw9FMa98eBiYGljdHsuw0GRgZWPfNC3YQ+MDIwBI6PdDByJLL1iWzd88HsOo5jhJHBWxrmURsQQojGbzAClnVVuk7lExW2ROhVWwDVMjCwLDCse3YeZuFu0RBCllkToY7RDOAJQIcNSEMC0ewHa7pvg4gF6QGX97zAei0BQL77Xq+Xtkd9b5xD0RhBVAhUMK8f4Nd0pml1nkL7aGOaXGUu/5gT1btBbDzjUw32UGN3gPUAdWa5NNlY3i9Yw/IlRdeZDjMV1ttY9rDbwtR2IJQOLvi3s4Zu2/t+QA14QLT3j0Bqa02AFBLBwi2p+/S9QAAAC8BAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABUAAAB0cmVlcy90MDBfMDA1X2F1eC5iaW49k2tIFFEUx4/ppqOr7uaqGfRAJOi9prZbuXdnZ+7d0SgXpehD0S4VEWkP6G1km5VpaYJFaWAYLWWhlmiWbDMs+iELkijMEh9hSEGFfsiKqOzsOtOBP/Ph9+f8zz33DgBAFAq+pUngOyll9JaSydTFypctGUxKq2VhiGaggt9Qlbcy6I6Tutr3KmH1d4mB5lhuN9yi6YgiVIUHfTPHnACjTN/XRt6ZveRmY7WY0nSARqp5kVrPnz8YRN1xVl24R3qlR2ReCS9+PNEhxCKKQ8VquW8nGYYLp542kavdZiW6brHo3niRX4koQ/VO++KcYLU7t31vJ3PDO8mJrfcF8jOPz0SUpWZPn+UJBWhjLiNHhgeqSVT/DfF27xwaj8SAitf6wQMBoJXmP34hH/2VTHrm+RwbImrEVUgsqjdUOecZvG+hpsHTJHeRnzReTqKlewp5K6LV6g6DZ4b8LRKs55xDFblKleFb9vDocmab+YrqgitD6bT96VdIYEp3jox7FDc3INffctMHR0YohygaxWnnKJsjgdnH5Df7lMMVE3LdlIV/6XZRI6JZKKM236cECQKvaTfe23zTWcW8KtPCecfsaxCtVb2h8hhwz1Z2LOWcnF6Yqnyo+SxWepvFbEQ2NTuU+4RzgmcuK/CUyDpdmVK9rI82DZfxCYhMqIT//TIZ5HSyYrvL9rxiXOY/mOlofyEliOyqN1SBnRQ8PfRgWaWyPa9UmRq8Y7viO87ziBzqbkJ7mbjEoPEMq7qiJ2N/WmX/5A4aUZ5GY4IrQ8Vo8xmKGPASvba7y/bV2EyOfcqn13mdkIgoCZWo5S6wMgi4aPHIUvJbv0TJHltEG4abBbx0EFXvdFUKEMii0sQmIu5vI383lzhaUk478BEBU7NDuS+Xs+B72XloqVzQkKFMVnGU7OoQkhHNRiVr7RoSGXifiTtiLvrtD8sVf1043TokZ+FPA5LqnZ6vFiMk8axYpPiUhcRt6nOMrJst5CDKRf0DUEsHCJsl4AvvAgAAwAMAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAEQAAAHRyZWVzL3QwMF8wMDYuYmluY2BiYPWcVG2XbsDAwMrAoOH4V3X1HgYmBpZ3mRZ2miBG1g11O4EPjAysx5ukHWpcltuY67LYfmBgYGFgWOD4wfenzan3LLYMYN0ejiCFLNIt3g5ydYx7C/we7wFpBPGXtW2wWfzxrw0DUL6yxNvB1ABsggPMPtZJS6YArQELVji6CNnamEpK74Xx511w2dN/8ihYYd7tqUCHAY31tQlxANvXMC/QweNsh03etwcg+1huCmU41GuutxFjZ7AF6WiJ2gkz+ojjrgfLdp1u/2cDMzpeT2aPZNTyPQBQSwcIKlZUhdoAAAAJAQAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAAVAAAAdHJlZXMvdDAwXzAwNl9hdXguYmluPZFvSFNRGMZf3V//O+csIkOFUlqp6dKtueN27zl3BgkTLCSMIqgIpA+VVlA0JKMPapB9aBPnNBWhQmuIJe62KEEwzCQkjViQEpjoB0EUTXp3vfOBhwP393Ce97wXAECLhj1xTneo2Zl98BGp8irF2You6qp9x2IQxaIjp6SQg8HahnB35bTIAp3k+dNp09s/sfQwIqVsRSSXGhDgc5JQd6WHxE23kZ7Sbq7l+yyvkfs00Tu3OgTw57HKgl5yqsVHGvuSudcFJi4JUTI6KdoLdgfMdwjthirSZO4low0T5Q6fhjuC5KiclZS1TsFeRIem2knQ2EeWXMXcyrzDmo+oQO7eeYuDh/F4Qb/tFe9f9pLFgQVbYeUwnxIZHZ2y27vFATzken92iWpdqxj5YqwvtxXieUzO7kigMLXFXP21RD3sIwPLk9xcjZsvQlIs7zCyG0hnTpjrFzYT7WLMpTGrr2SCjr+6ylSI1GhV9Lp/mU6o3S/tWVH8JfipW2UxP3lPjYjiZUvv8L+kMK4Wbq59teVva0VPhY/fGHxMdYjS0LrdvfRTnJabObNkawx/EIeWPfxknZ6YEB2Xs5LMKwxC1+mYci24ar0lpme00nAgh5QgKpVnlP5vzTADbYNQff4kMWU3BdMOXaSbswdYAqJEdEJ0PvtvCqn32N4Gj033wk2qbw/yCXlA9ZFVoPXR3l8BCu4g7wEjUXmbxZTcNj7XoCFmRBY5u6NMBlkhGl49S35o/WRj3zd+zurjTiCxyt1Sb/8CA5NCSLyjLKvXKcXuxRGqMN6gBkQZaMNu7wwD9xL/95lrNJzeSeIsb6ioHnGUIbLJWUkXhhik5rB1y8egv7BKvMbO0WDHA44gKkf/B1BLBwiJmuPVjwIAAEgDAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABEAAAB0cmVlcy90MDBfMDA3LmJpbmNgYmD1nFRtl27AwMDKwKDhOI1j1h4GJgaWZ/Oy7DQZwIIejgIfwAwLx+xJL/fki7+w+QBUsbg7zO655Hub6g23bBgYGVg+FCY4CIAkjNbn2XGXr7eJvKC09wMjA+vpeekOrrsv2iwT+AZWWFni7WAKtI+FgcEBZh/rpCVT7EDWAAUrHLm0tGzWT+PeC+NrKBnuMWHaBFaYd3sq0GFAY31tQoD2Ac1rmBfo4G9XZpNcfmoPxKERjloybjYvr5+wAeloidoJM3qL45JH+3d1VJ2wgRmtPIFnz+O50/YAAFBLBwg2N0NU3gAAAAkBAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABUAAAB0cmVlcy90MDBfMDA3X2F1eC5iaW5Nk3tIFFEUxm9p66NVN12TTEH9Zyu3NFNbXfe6O/feWSslKYnAR4KEGpZmGOGLRUVKMtlepCFUEi0RiuZSijNukCKGVNofUlRCGlS4PSCtROrMOAMd+Lgwv4/znfsYhBDyB6GIALvDc9HeE1KDi/q8QnlkO33h7mfrAK0HSatcHhtDS7/5kTar+GO4A0ufhM+rZAesPv8JaRZ45DCwiCknXjFU44nsVpLWVE40gPwkrPb8Vs9Q2RjvM9qEj6VexVkrs1yfNopoAQWBtGoushPkqGLNK07xbrATzwQ6M0ffmzgjkJ2KV66qAR55Ilhi1TWc03semyaLuNt/xrhdgBKUbDk3ZoKiuVYae+Mgjn18GTefziKmrHlbMKAQULDar/gphSFtz/PycWXLM7HLmE4qcnKtiYB2K961chHkSaPa8GZcNtmJfw1P2vz2JViTgOxRztBXsumZHb128XWzRlG4128O+jJODVwJk9gG1SPVarQdFUTJ5+yuHRbKb5aavPUCjQcUoEjex60HFE1o+LLlEUve9SWh5lw3eVfSQXWANoF0ar8YF+xDx7UPvrLk1/eKbm8nmakIw8mAUhSvXKavDHmq6cCJt8KTpiJRv/kS3e+Ow6mA9iozyvd79BFD/mf5pIwUHH+nUvANK6QeYzQLBLQRFKjOZ/1Aka6BNUa3WQ53leILn+6Tnyf/klBAYaBQNXfuIUUOgXz/uAWbwxvEEMMVsqj3wyZAaYp37f1FUlR8hKX0LFvmg+rwgUPTXNzUOEkHZFay5VzXAkPJPnzLGa9ZM7QoGF4OUW5bNdUDCpeuQe1nnWbIupVmv6kc2d5Zi4uP99LcxjwuA5BF8a69AzdDujhmHOwTCliGeIoVUqG7hZN+gEzQP1BLBwh/Mtz0mQIAAEgDAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABEAAAB0cmVlcy90MDBfMDA4LmJpbmNgYmD1nFRtl27AwMDKwKDhGLKwaw8DEwPLs3lZdpoMYEEPR4EPYIaF40+zS3uePrxg8wGoYnF3mN0rg+s2HJeO2DAwMrCqG7o6CHwAMpYZ6zgsf3Vj91lRNxugRhYGhhmO19essPm4+x5IIYvMyXAHPwawhIOjjAFQZG+inwPIYqCxrKqeK+1CDx/b88lwFsghrNtzJ9sJQIypcBRjD7XZuYhzL4y/5tDL3VUbloAVek6aD3Qx0LSm0gIHuA4+sWk2/zev3g3xQYXj42QeW25LoEOg8lCFGY4Hzyvv4mhJhrp4j2NN6ew9ez4tsAEAUEsHCIhMlV/vAAAAIgEAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAFQAAAHRyZWVzL3QwMF8wMDhfYXV4LmJpbk2SaUhUURTHj+Y6LpmNSklaaRTmOrmmc33z3r1vFLQPGoZoRiYuiMMQVgaSM7mRqeiEkOgHM2hBqUiMSOc1EYaaH8wsCocyogiSsixtszozvokO/Hnwfn/O/557LgCABwqCPLUGS6tW2V5I3B89NTs11FC9cYA5IXJG2b72smgYLH8Xr2ZGSdUFRmL71d/8VYjG77r/BG5vRDDsZF3J9WRiMZ+4f6kTnGtKBTdE7jbs6LlYy6B8TJw9UEnCShrJwN17fMVksOCNyAfl7cgFrQAGPSssrpdi2k6TWUVnuvllMh+LJE722kt/UwRLEDOdaiItbsdJ0mQRf+HHGK9CtEfOXpulVQAIZC9Knqj596VEtzWbT6+LEXyRrEf5/ssd1wDUCVdMzWZNz4r6dsgYdzQrjo9HkiB77TU/Q4FTUZ9nOeREwlmykBEljBuX0hIRJcl3aJsZinVaqI0Uj8woJJ2xQa0sy2K/899SF0SuKBfZCz3hWmg/J5o+RktVq+XmEN8mTt+uYbZdeTp2ZqvVLVqwPKa2fcxl5Ek3Jp7Hx16aTI9BtEHW2t7CKMwbaUR1jaSTOGn/5ARpfeCamIwoRe5pvxe9yMBwTBzN/aD2V42au0N30Y6Dfswf0UaUv6NfH8cA7vBV4a6kzGtQ+tW2nXYPR3B7EaXKXnud3ydCXzAb3GQyd1uzpYIFH8Y+VXNpiNTyzPb38u089rOw5Nkkojs0NzoVGk2HHhqoApEXSuE4X2wZnq+Lxp4MIh5LbWSY20GvrfRrlIgCUEpHbgdFn4J29qSSP3155p+5Chq++SJve7DpslfeLw9whlprr5PLr1uINU7BGT63aTgkGjl7LbeIwfQ2lu8Woe59tWxWLmXRWym7hUBEQahARzu/AAaciQ7dnxppVPmSqBFn6hfZKmAICLLXXtMuOO87wZrDS5UxmaTCepjvHS/jKSIE8BdQSwcIuMUvts4CAACYAwAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAARAAAAdHJlZXMvdDAwXzAwOS5iaW5jYGJgnbSkyy7dgIGBlYFBw/FUR+UeBiYGljdHsuw0GRgZWA9NsnYQ+AAU6dEzsjNO22HDa3pj9wewag9Ho0VrbXQXHLABKVQ3dAUqBDJ0m3Qc/mgk7ln29KE1UCELA8MKR+c7LTZ7Hpy0YQDzPRyjIQwLR5AdLL5lwWCtLIs2+TmAXKCybuIeoJ2sNssm2bVPFtvrs2YdyFWsN6wP2IHtOHrJ1uGei/yeU6dm7wRpPKYX76B303hPU8ovG5DCVY3zwc5n+bIzAWg02LIKx++Lv1p7fF+0B8Jf4lj+vMbGpfWSDdgNxzJgClscewwv7S7XbYMq3OMYlj3buu7/cRsAUEsHCPDbyBcAAQAALwEAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAFQAAAHRyZWVzL3QwMF8wMDlfYXV4LmJpbj2RaUhUURTHT1NquedubpRSltGoqan17rzl3jeKVCLSZi4RFoFbHySmTC3NLJK0MCxtJQiRRCPDzPdytEXDGKIoaDVNSPwSkiV+sTPjex34c+H+/pz/PecCACxHwe8oM9w9aQ79HkNqL35Twr5NUe+ROrYEkQFlPx1V381gyNNcORuizr3PI+PtxYkbnjfTWETLNC21+5wnZYBxdi++iJi6o0lbT7l03HaYumh5LnrPW+coFH2Wqz15cnO6mHRkR4tydbrkgcgT5aHnDpRSvJEGqg6R6NVnlXlWJJR31QlxiOI1r6Masxl8tMpPXfeS5OEyciftlFjIu0ibESVo2Y7cgTwK0S+YoXgn5xSaQh5O8NK4OYF6IfJGeen94IYIkEGvP3ZX640N3KTxkmC7ECMlIknSvI4qu8ZgrJNm+64l03sqSI4ljk4n5fNbECVrO7TPDK3xZvC5IsdafdR5049+g3Cajm0UmJN9ZSgnfX/pIWZo7GODxnC1SmpQ1szM801eFroCkStqhT5HY5AZ+E1UsYaqudtL1Ae7jpqab0fyKxH5oFbq7/vpawZopvZ/ux+cpNqvuPUiScEzVfMuVpcIfBA9ktyv5u/epxrPv0k4kJli2opkm5btyI01MvjF2M1jo/3t7l8U2wE/GsE9k3wR+aF89XbVkRQynZl/wEulQhGfGENtYsvgjMQhIprXUd6MARQIFtuY8qayjdS2WqWST0m8CRGv7caxl/qrDAry5ZzeEc5noUnZ99BC+7LmqBsid5Sb/r6CLPRZqaEvh7O9SiN9t3gqv94h+SMKQPn/n1fE3BrpRN1VblVPhjrnlUpHjQZBsBPNuzhHIQU+jHZ4h5OMyzXkTFS81PL2uSAholq2I7coUwa+lH4K7lSy+2e51QfH6P4/wVIgoiBUoN5vOEqGxk3sb16N8q53nXoo4gP9OpRpfwzImnexAilUd0kbZZHLXbCQxEdTom18QsDPhDTUP1BLBwj8sBy15QIAAMADAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABEAAAB0cmVlcy90MDBfMDEwLmJpbmNgYmD1nFRtl27AwMDKwKDhuHVKwh4GRgZW+Uw3B00GJgaWZ/OM7AQ+AEWyj4g7qHussmZ7u9LmA1i1g2M+z+E98WdjbUAK3SPCgArBEh6O/1ctsFGbvM4GqJHlEUuOw03/yTbv47fbAI1mqSzxdjAF2scCMgFsH9ARk5ZMAesGClY4Mi97YW0X/mjPB6DEDJYddimvN+9WvWUNVph3e6qdJsiFvjYhDiCHscRmBjjo/zCxubd8wh6I/RGOZ3jYbOJ9ZoDt+8yR4QA3epk40+6w0tY9EP4Wx2gjO2uj2g02AFBLBwjUDRGP4QAAAAkBAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABUAAAB0cmVlcy90MDBfMDEwX2F1eC5iaW49kltIFGEYhn8P67qeVzMzO1iKQgfP7q6687vO/P/sBl4Yaqy1qBmbEdFNIR08LHaRYGVGVFKyFi4aikEXLZUzLUpUWqyGUhhFJRVsBkpWCNvh23GmD17m4nn53ne+GYQQCgehJI3Z4TlnvjiZhwfSR4R2v4XUh9ykQYCCQYGnNJ4yin6u8Eu2KHHBvRtT3xbda+8Ctx1QqKyQgC/uNEWX5/gzuwx4qLYa+xZSOPfRXk4t56mVnVOUIlRNxl9U4qK0fibSq2Yb7e/YaEAxoGglF5nKUByl+XNVjOVQFW6vCzMdafeX7QSSJXtXx88iRyHp9B4T9/VF4NytT4wH7B42G0iOnC3lXnPzaLGTfm+x4gw/wZrHLra59yAXG6gOilXWvddSZHPxj2YteFG/F4v9yeyPE9lsLqA82StNqoUih5N40wz4q96OvyQ2cKce5pjyARXINwzcBq2hZjQ3yA9l/hFqkidKZioF0lNRSVWAwkAqZd/vjWZk2yDduWb8kmCdjtcf19wnOwBFyJLeo2+YoKdh/MkHLcxStyh03LvO3e64QLSA4kHa//0GCbRlxxq7mbNN50VnWw83+qkcFwLSyV5pFlmK1g1T4+d6YWTKJ9S1RZGgyRiiB2SQO0rf1+qmKLyJb3Cpsa41U/CnVxCVKYlGAooCRSr9TPMExbXQV4UWZiYhC28qd3Irz35xCYFTgBKUXMdd6DfOFes+MrPTBaLvajfnfB5hKgJULHtX/7/1BNXvoX+7BpimOoxd+RPspH2MKwFklLOl3NAGHqX2kfk7+4U3U8uMvUNDo6/ouURAa0GJyr6qbTzy1NKu3lujwy8zxLeZwfRwaTPLAMKydzU3nSBHClkWvxlbb9iw9oOf3ZxiYEsDrwj6B1BLBwgw3crQnAIAAEgDAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABEAAAB0cmVlcy90MDBfMDExLmJpbmNgYmCdtKTLLt2AgYGVgUHDMV/eaw8DEwNL19x8O00GsGCEo8AHMMPC8a/kwT1VXZNtPjAysGpqmjrsqxS2OVE1xwaog5XBu8hOACjB4no1yuGwT8zee+8t94IU3rJ1ckjoOGbFkZ1mwwCUlzkZ7hANNJqFgSHAURPCsHCEaE33dQC5wK6wbc8HoJkLBPbbRZyx2t2fL7UHorACqBAoYd6/wW7zgnbr/7I3d4P4Ex+us2P+NGOPY0A+2PmtFjvtoEavATsfrHXyeT0b2dWL94BcVfEi2uHotql7zJ7MBbvKMrPCAa5wZovUrohUV7BC0cYqh+bj/LbXsoxsAVBLBwg3hXIj/AAAAC8BAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABUAAAB0cmVlcy90MDBfMDExX2F1eC5iaW49kWtIFFEUx4/Wum6bqa2baQhCG2mZWqlZuzszu3PvTKWJBVFkxiY9TAvRKFczelgmWZBmZQ/ESKwPmVQUijuTskFFZKbYw0jrg2TSByWzFLHOrjMe+HPh/s49/3POBQDwR8GoSYT646KYomcOrngi7ex6RXL6T1EfRL4oz+mN8ocU3PPElLuTknglgfncHpr081YViUc0W9EsT17MHwGyr1NKrMw9y7j1e8M3PmNZPNEqflq15hmDADmNQsHhOKbaxDNXm2/xlQe0fACieagA1RdEHrKDhOOOfDnsUDJzLfweO5Fcwa9EskrJnY7ndmi4L8Rub7YWX+eZirxIW+WLv/bVSBIU7+lZhm3grKGaTp9nHy4D05n1nt3vjiGBSIJQgTP1amwA8baJJt2zntxBGUbclq1z37CJSJKUXG+cnE8gqow6lzktA75BTIlRy+8a8ydrECUrO/TMDJszREjVCTdjP0nhp9yWxZZIGjj1lGgQ+aE06v7mxokQslKo/joi3QjOk7oLt5CDq7uJDtEclE6doyxchPh6aowAWeo5K/ntPMZt276JBCOajwpW+xs0iNDWTTz/djEgSvZc+SyqZdfiuU7J9YYjiGLHNO/ED1eBvl3aWDvET9FG3ozIonh7fV06ARwR1N8w5Vr+LkJu6usg9t+1nAFRCMowUy+BwvoW+rU82tr26JwUG7GCnIdcYkXEKLnT+xvnwTFJSmNZObrKKHc4R9mivWEci4hTduPdy/B9Cukp1Fd/yRqtz5JOu0pIXUYXr/esDKVX+6u5SKGtmKT1JlrT/7EME5dNTC9P242IFqCMqm/dbgrcPuIs7bUOXEmVhxLTyFif3o6fDnYlVxnEBlwhOWoyy3wmZSq/yCzbWWjnkRDF2+tbtwH399GW+TpfSpvsYMx+b/mlR3LZUEQLUaFqOe4jPmsl8pL21gfymFR65yFPfnF2fAyCkjsdkdhKuW1Py2Pmgqaf2XE7ky0yGywikvWo/1BLBwh8vfRI7QIAAMADAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABEAAAB0cmVlcy90MDBfMDEyLmJpbmNgYmD1nFRtl27AwMDKwKDhKP7SdA8DEwPLFY54O00GsKCHo8AHMMPCcfqptXtMvbptPjAysH6LtXDIV0ux+fOsx4aBkYHlQ2GCA0ghCwNDgSNHq4+NlIzcXpDCK1I5Dp6qZTYZq6eCFcqcDHfwYwArdHCUMQCK7E30cwBZ/AHoGlXPlXarDvfs4ReOBDkE6Lr5dlBjKxyt5l+29oreuAfGZ/uxeffaoCSwwrzbU2EujkC4uMaWf2/O8kAbkNGrtZrs+KTWW/M/67JhgJogAHQhi93NWAdLPy2rP3xWNhCjtzj65eXuCbqUaAMAUEsHCFA39LnsAAAAIgEAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAFQAAAHRyZWVzL3QwMF8wMTJfYXV4LmJpbj2SbUhTURjHjy9L53xZ+TJdSppRpuaWTp3Oe3Z3zzl30aCgTFhlRCpJhETWl7KaIgRm4ksOy6hlZkJ+KEvC5N6mKGX0wTSwEmQzk/wSS1Iwejvb7nrgz/nw+/P8z3meAwAA4VRAJTfbnM3mrW4l3JJ8XYh1ZGDX6k0SRFEwlff0ldNEwNo6X17xWRj9thO2rG/U3ZpdRBqKQiWFeH38Ag9sDGkbyoZvq2NgVpkVTSTVoDApLyzQ01NHQP8YXzGvhpXdGhhfaufaxEgURVE0VVQgF5gRsJ0hJYxVHEvOgbfV/cbtc3puNyW5ktdXtlEEel7ysq5oOJKqheMNLSajYpXLo0gnZfvf8gYD8AQ3zLsZkzYXfjBYkOfUH1MMJUqqmEA/dpz69Nzevr9M2v0JMe2THuXJZtl8igokrz9XQMBRj/fNJkEuwQCDp5ZMKymZbCFFemmGG7y+EzVmUJfN5y08F+zPIJPlMJKM+Wksk7hM8oLubWbQ0sHvr14SpjJThT1BR1idzEDkFEVQyQO5v1PMwDmDvfuoMqrE1h1rBcvqO0YtRZsk+feWjoGrHnf+0IjLj8LEmSvJxgc/FYYiioqlnr65tLYRUHqML1s8wDS9axaaiy5gT+cKjqUojio20O91EwHAihpRI5M8WC52TZ7D+uUB1kBRieT11dEiHrhiSfjacWGgNkqsuuTB426eZSiC0pt9/8V2kgD9F2K/oYTW4HsvarM+oulDdqygKJJKEbifU43BFEvAr/OMhU2D7qFJbtjSi+IpSqCK//9fHnPAGYrnIp+KveEh8KzaoAtFDzmjd6WS1783BwLObNLhOsy0390FLw8Gc9GydmSiiJOy/blXCfAUE5emkNHmXhNOyy9iNkKLVBQlUqkC/VpzCHCN4lfu94aR9q9Mfs9mjFTDCFGEJa+vlOEE2Cz4e2WcWJseBRO1+dzB0T6ODhXwVP8AUEsHCP8dhevSAgAAmAMAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAEQAAAHRyZWVzL3QwMF8wMTMuYmluY2BiYJ20pMsu3YCBgZWBQcNRb4fyHgYmBpY3R7LsNBkYGVgPTbJ2EPgAFOnRM7KzPlNsc3/Kpt0fwKo9HLO5U20uidfagBSqG7oCFQIZt+/rO9z+m7BH1r7VGqiQhYFhheO/Fzo2yle7QQpZYgwTHKIZwBIBjpoQhoUjSCvLW4dgB+vrKntaV0/dA7STdYHAfjvVjVd25Uz+tRuisMIR5BjW7D977VbUNFqfObVrN4j/2nitXfD38j0+HQ4g57OuapwPdD6QsX1vn50AxLkLHEXDRfaGd62yAXnnAP80uwsm02y0jSVtGMDyFRA3MC9LdSi4ut9a02KFDcT5WxxlbnvviZsdYAMAUEsHCApy3gkIAQAALwEAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAFQAAAHRyZWVzL3QwMF8wMTNfYXV4LmJpbj2TfUxNYRzHf6XQ+5vqcq+XhFDykkL3nueel+e5Jy+LLFtmqZa87ZZshqFhy2R5G/mDVcvQUkYySTqpLH+0mCa03kQYaq0hI1v53dO597d9d7bn8z3P9zy/53cAAKai4Nc8GW7myPnvPnCd7y8pEUse0JWnjjInRM4o21OtvPsMnnnLsaWtSniaPwnvTY2JHTxPlyNy0TTJ5pv82QLwkR2J0ZM383u4xZ6p0ueAdDpFy5ti37PkDAVrtyXK8x/nl2IgF465iV3VJskLkTfKy57bsI/iinQrRUeCY1OU3RkZwp3GLGEFoijNq9bFRAadjZbQMB/SHzmLNOUniT+GXKWViKK1bDW3YTuFhc/ZF71iMhWMcDMyiNR9azn1QeSL8rHvB5UiNMTR28We9Z/OL+C+f7suVNwMk2KQrNK8amVfY9B3l5LQDs7aEkl6ryylY7W7+NWI1mg9tJ0ZMjNlqDnJDFmlinw4nzs4GM8Gqg3U1dYylKu9fxtWyJBrtUx/26Rknw1R4s2H6NGv3swNkTvKzX6OtXoZdDWsYvyV0p5nUdYX/eb33thP/RD5o/wcfdHJwEdSd6+Xys4gY31Roc78p3Y2H4vIqHnVmhPOwJexR0O5daGFhUpzpQ/NNzVKJkSclq3mHlhmAT6bvShbVHeoeVzJbndnib49QgCiaagAR245g6Rq1tYVwh3P2aMkJBfTMtfdlCAya161TiRQ6DOygtEZ9anlw0p33QFhZvoagUckaL1R+8I3Udg0l5FMD3JD7DNtDZWlHP0ryQORJ8rDMastIpQ8pOtetz1xvhxIagwbhNNLV0uBSIJQgY771YkAx8Qu6+P6wYgtJL5ql3k0L5fHRZA078T3JVJoCKIuTUYycvwpZx6uFavq7ok4lMC0bDW37yr6yulf/2Yu2sVbad5YIGWOdYjBtiRUsGOed+CrxVJryz4uyrKZnHNKlgTDORF/GpA174RvG4UTP6X+tjFFn+ZMjPyAYBmwinG2q0f9B1BLBwh/7LXw9AIAAMADAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABEAAAB0cmVlcy90MDBfMDE0LmJpbmNgYmCdtKTLLt2AgYGVgUHD8VuE8B4GJgaWrrn5dpoMjAysvafdHAQ+AEVCQw3tRD/E2xRKzLb+AJSwMo9z6LgVYTM1IM0GqIOVwbvITgAoweJ6NcrhqYXV3npRlb0fGBhYGBhWOMqafbF+vr7BBmgii8zJcIdoBrBEgKMmhGHhCNGa7uvgZCO8Z0Ww6x6gnawLBPbb3f71aZfgu1e7IQorHEGOYTXv32DXEeNk/SRwyW4Qf+LDdXY23+L3KNbr7gHZsTO0wAFqdAtQB1Trku5l1hZlaXsg/DWO9Y/c9lRWR1gzgD3fAjaaJaRpg13hWQ7bhMCzNh/AEmsc3T9Y7Zkn12YDAFBLBwjcmvptBQEAAC8BAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABUAAAB0cmVlcy90MDBfMDE0X2F1eC5iaW5NkmtIFFEUx6/52NZddVNTFBMhSSkfq6lp7szOztw7K6Y97UWZ2kvri2QfMkFYsEQMxcTQCgRNIzF7QJaad7UsQk0Te9hDFgoq0w/VWrpWZmfHWenAn4H5/Tn/c8+9CCG0HIR+hBpRU7Hxr2GQsUSfobazrfjBpkLiBGgZyP6Vquw2QX2exrjoDvqWOrP2X7nhlVgLX+f/hCJmRZR3kRwMcWetUe2MMvuN0L4rErsBUoDcHD1HiggaHRPXGb4za1rVbM9JlbD/V7WgBuQBUjtyRwhBKAN7zKjYCouBCc1x4eOVA3wMoFjZK5U2XERdJeKFMgWbafViX8XkCnnkNL8eUJycvXiWbwZUWEeqGizmycf3Ga0wqq8ZX4s9gXiBPB39UJ0BmhqCn0yYLYFD5iumMV1G6lN9PJAE2StV1QmCTMV4tKGOef8uhM06F45RfwG3AVCivEN7Ntq2z4jSlKLmZT0N4Ot0xyaCyOGFNuwCyBXk4tifOtqIfGPEm/m3aFdBLHW7tAVPzTzD9rtSyncmnaM00Ii0TaSns4s6fyV06mEQlziehjWAVoA0jvkmfIyo9zneoeqg1ddm6A3vkoQiVb4+CdBG2StVtgb2nEj6x2u7B15U09T6SWGetAnJgHRytpTbrRRR9ipS2veoW5v1kfoUDWFbVy3nDcgH5L3UL46glE7SMm3VZR5Np17qSPx55DhmALGyVyrTnICy/+BPcyrzpOU1jSn/rS88EsDpAXHybqS9dPyE+XKxt4Ik7xwMZFv4Zlw5v5l3B6QCuTvms90D3yyOClvQ5ZQ30ztpNfgimeR9Aa0E+TpyNc0Ecf64Imor80GpMTf2nsfT4VYWLh3xsleqkLsY9Trh4Ms2GpGuYEqTVHxFXjUvAMJy9uK7yuORaQ9ummhkPXd7sQsufVxaezTvB8Qf5Lf0rnS8/V0No1Z2fLuJPWQ7wA0HruZgaCTK3sWqAZ+I917/QsnVMPZUgsLQ5Go1GIGkgP4BUEsHCC37sB3vAgAAwAMAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAEQAAAHRyZWVzL3QwMF8wMTUuYmluY2BiYJ20pMsu3YCBgZWBQcPx3hyWPQxMDCxdc/PtNEGMN+FhdgIfwLIejm9OGdkkOPjbfGBkYI3+4+hw0LnQmqHZ0gaokJXBuwiokJGBxfVqlMPsmep7P60R3gtSOKHTz2H7SW9rEw81GwagfIxhgkM0AwMDCwNDgKMmhGHhCNaqEBLh4FTItufD1X17QFoD19s67F7OvKe1Vmo3RGEFUCHQsuw/e+3Ezkdb64jP3Q1xXIujRYTTHldWMZDzWVc1zgc7n3X73j6Y8xc4HpvEsHfmtz4boAkszrxT7S4sbLHZsYnNhgEsXwFxA/OyVIc3/2Zb5yRPsPkAtnOLY4mW2p7XgZo2AFBLBwgYZqmXBgEAAC8BAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABUAAAB0cmVlcy90MDBfMDE1X2F1eC5iaW5NkltIVFEUhpf3NDUrb1gvlfYgZmpmZrNn5py99xyNBKEekkorTSMvKWT5oDRlWGZWopDTg0h5nYpK04zmDKaWKYKZYDckQUJJs4uihWWtGc9IC342nG+d9a+91gYAWIGC2UAJagulm9NtpOtrlvwzpo4NTeRxO0T2KMtpjUsPOXR5Sj7ddXLpxi/E8smUW8bC8HT4TxAyr4PjBt5c85M0ed0mnc1vafL9EOaMyAXlbKvp+VoH+ZW8vfUPmRj5QMZcFsSmFAN1R+SBcrf5fivgkNOsayj8SFSX7NRxW0rEVdeSxXBEEUquNfRtFLxKeGKfL+kYGyc7Ms6Kw7M5dBuiSMV76S7fBMiv4pFJL83Ti42koHtQ89cQzDyRrLK0ZasHVQJAmGCvHzSHVrWbA/RvVHt392u2I4lScq1xuJZBRxIPNC2qtO8HyIJTGX3S/5zuQBStzNDiDVlZErSf46lbLsol5kxynu3hxnt+zBGRE8rRNr89ERJcyNRlRlfLc0cd5LD4PPar0INbduWq7Mx6j7h1Evi38/ryJvmktEne3PJZqw/IZV6IVqO8bP0VB0gAlFZ4NMqZpdnmkX1u2qBQQbMTUYySaw3tEIPYIm4sr5XH1z8znfgdRx/dImwXIpXibfU9FaYDbQ4v0bibirYOyA8EN5507J2wBtFa1BpbvetGDvvbePYRVzJ/kMkpO6tZ26d0Znk4aiV3aW9GBrCOS9M/5BvFT+Xvd6bVTUWvBI2lJWU21rloOxkkbOSjl6fI51qzqscg0snJXuqGaCXKbXm/fSLUtLKc034m1/hFklwZLISLUdQbiQ/Ke3m//iJAgXjmcY1Z+yhCXVierlHrirS4dBCV3KW5aLC/EMb6gtRpyY1keK5FNM20iBQRU7ytvqMGfAdGdndDHXnRP2FKuFFBA6d6RV9EfihfW72OVPytmjYsikQqiFRftTtEeyquiByRTsldyjvAQD9DV7cOyGn1QyTo47gwl5gh4jIhFvUPUEsHCD2tURjyAgAAwAMAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAEQAAAHRyZWVzL3QwMF8wMTYuYmluY2BiYPWcVG2XbsDAwMrAoOH4dfO73QxMDCzuEWF2mgxgQQ9HgQ9ghoWjfOKmPSHrrW0+AFWEhjraxf0zt5Fn9bJhYGRgjf7j6CDwAciwuGvskPTSec+Vi+esgQpZt/ZG2h3tm77HLVMNpJClssTbwQloNAsDgwPQaJALhNrsQBbPUwJbzjppyRQ7kJ1AFRWOvq8zrLWU9+8B2bnZT8Le1uDQ7nXlj2xArlQ9uRHoSqCZnzkyHMBGdc2dbFdce9Baj3WPJcgxoQcLHIxWsthMWRsJtjxiOUgh1OjZU6x3Sy1jBRnNqhe3ze7EhLg9a9iZbQBQSwcItZrT3PIAAAAWAQAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAAVAAAAdHJlZXMvdDAwXzAxNl9hdXguYmluTZJrSFNhHMZfU5dTc1vTWWlaZKR4mzNrNt+5c3nPjAxUYmiEgdkFjGlipZCoX5RkmqGlTqKRRX6IPlRSpGfe+pDdlEzsohhlpBNKygRNqf/ZzokeeDhwfg//570hhJAfGIXKzdX9NnNfphPr8lL5P42+rCbxMvECtA4sfN3qpwhaWuYqtFf440nTWPgVcWKSiYWv939GQa855LhO+iwzGIc9wSs3VmiSco2RAVoPlkkzFy4QVHKPM0cN49PRc3h//EVacekoHQhoAzhQ6kVmBlWXkJPL+c6YDhdWT/amk496OgFIoph1K7+dQ00ZZGntCz5Vu4rf/VDRHbY2SgsoSez27OUhg7QthB7yxjnRr3Cuq4r+NFHOBAFRCMv/11tOI9TGPP68yO9kavDd32VU4XMDrQOSLGY9KqHQo2ZythQ7W71HcXBctulNbhmzG0iKeIa+QiyYmNH7Lq5GU8/3FYwbkp51s1cP0sRH5D7S+ta2mtGRcK74Qws/Gon5ulqHfiikmxXuSi7dmaCs7QTNqs3CfXSOt/DHNt0X6lAcOF7Muuc57rDoqYwb7JlLGw+38gvldqYor4FVAdoIVknztnWxCClpZbMKL85bnZRXO6NQvzTuAbRXzLp1SMYhNEtl9pbyL+objNlyGxs59dWkB5Qq7sX9DgqTOZQVwRUo0/G0PZJXjMywA1N21h9QANhfWl+UAuapSGzPz7Tzu2axZWCEtVSGMWrhyMBqqVdZR5C+lYxOnsHnZEWGHRMJ7GaXld0HyCBmPToM++hmq8Zu4cpAP2No0He6cVVOpwHBYre796aGQ9W/mG8aHa/NO4CtOU3sA7uDDgGkAYdI4/rfEqSMIYMVrl6H4jZfHG9jS9unKCOgdDHrUT28lzGmckuAs3W4E2fMzJt0FhttAkKB/wJQSwcI6HJcm7ECAABwAwAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAARAAAAdHJlZXMvdDAwXzAxNy5iaW5jYGBgZWCwcGxkYGRguagf6RANYvye4uegycDEwLo919lO4AMDAwsDg4aj1tVruyUnzd7zASgxKabFDsSPDrq2G6Tw9raVQIVMDCwqEyfZfbljuOdFe/meD2DDNRz73n/dnWbOt+cAUGHe7UVghazhfJl22Stu7Ik98WJPVVLZHqApQFum2fmBGXbxdjIGjAysa9skHO7kde0GGd2mE2K39J26zX1VKRugK1mf14Q4CHwAMhykDB2O/3fb82XXMmuQQoYF7XZG5z5aN79wswGZ1uV3zk6TAeyLCkewjp0q7g47/Kp3cz/ItoZ4b4sj7yOFPS+uSYN1RPBJ2IMUsnyWKnP4tfHIbg3W4zYgjcuUrB2yzjLadHGI2wIAUEsHCD4tQUQbAQAAPAEAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAFQAAAHRyZWVzL3QwMF8wMTdfYXV4LmJpbj1TW0iUQRQ+W5q1Whl2W6lYCF+k22qa6Y7/bebfpLxEhnTR9qFISWrtRj0IWrhmZWVXKmttMepBM6kg0/mTZKPsYhFFSdQSBBK+ZLVINzv/7mwHPg6c75vzzcyZAQCwIkBJc0GJxxWwHuG1UgFJvpynKO0+ZkFqHMLMcaZup8MFUKjF3mjgw2Prje/GkDzh9BZpPFIxiPECsCHVBcFPtKnPywf5AG+MK5Xb7j6TzB4TRS+zJ7ivUbCnuIY3+fjYrzp+WCmSM7Y+yZqC1FSEmcMRPEvRQctmXu7bqxpmqTLujpSGOV1ow9HbwGAoyWXq9n+r42ap39KWsRRzhvAO+4JKIVhLKxr+8uv9bfwUcUtvn/Q6E5GZhkiM9qv5rkHNcc1R/IF/vZ1sxNQnSL/7OpZmIrVMaCNRogEU0K4757kU6OQHvc3mtiALsVzcTcT3kQrwRvW7ThhH/9iMUKI3x6xOQiwSORKyAnBT1SrqjezqJuNHaaTfYsQSMZMJZqFnpgsyb+nv8vvIl76BnjL1Hq2at5bFCj5WaOFuUIcam1699QW5NNJMNpYt11oP+Kk5+/joG4j6tgT1U9aFHOpfkHUWq3wxlKk5kJkuEI5Dz3XoTWSFX16Sko5e4rv6SK342apmI5UjeobPa9/BwNPNCvKdZL4lQC40ZtJLfxPoDKRmImb89x1Uoaicdd0f5Z0VRcT4/Vgp372YOpEhQhuZh87AvYR9tJ8jrf5REirdrnXMuaLlIiWJM4ffX/FmHWaP07tWDHafXL2dn7PNYWuOuWkCUpMRCdH9ZS3QweNmt8vmO7s3V3KHNYl9bozRZiE1GzEr6muvYhD8yNKnzeVxlUkkb2UqXZU+QGWkFKENh8fBAJy0Kfkx9z99QEJvU9U0uV7FoYMmvMO+hyw6vjK11beLp7zak/veW0q3lU9RbEglI2zRfqtMnUfZ92EPr3q4L1d9vZHG592S8DMAE1pxMbiNFiUg+0l7f0/uSHGZbB84I+NiwA8L/wBQSwcIvEnHDfgCAADoAwAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAARAAAAdHJlZXMvdDAwXzAxOC5iaW5jYGJg9ZxUbVfCwMDAysCg4SjwgZGB5XaCv0NR5MHdk5w272ZgZGCNMUxw0GRgYmCZVp1nJ/ABrNTC0ah00p7eBn4bkA7O7EgHjnXSe/OOlu0BKXyXaQFT2OM4ZYGYjcVjYZBC1hM/sx0eXBK0qW3XtAEazSJzMtwhGmg5CwODg6MmSGRvop+DwAegu1Q92+1Artj5+MBuCH+l3Ys1ZnteXPyxG2gH6/bcyWA7gForHE3nL7Nu0H65B2RHorKjw8TY+7s1HsiDFebdnmoHdr7n0T47kNEs4bu77MrOM9qY7c7cAzFhi+O5s4E2r7mkbBigJkKNznB8FMtglXhGyQamMI6Ne0/2ORYbAFBLBwj6Es7wCgEAADwBAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABUAAAB0cmVlcy90MDBfMDE4X2F1eC5iaW5Nk31IU1EUwO80W35/LD8wDTUri4qZpXPbdW+7976XfZhgQZCRZmlEhaYm6MiFiWRTyggrtZaUlS37Vsu9tSKwFJEKKsjEwKD6I7QPqT+kzp5v0oEfD97vcM87556HEEK+AIr0FSwuq9B26Dz+cCBCHLgwRZRvG5kClBegkEEuI0NTf/iXm0tELvoBXtnWqg2ZfEu8Qc0B3E8pbJghdMw0fKtETFPliZ7XaiD5/9x5e3n0vZaPrenElbwT51/pIdcLq01KtwKUnroni3iEJoyHAu04peW006/sPrGqgrlAUEFAoKcAEggq280fCUtz3s67h1f19Bk2PbGT1WBS5NyZOGlEiDPWn3vq3K2LdhaG3tVffvfVsAbMWrm2VHcN5lFeG4s69RAPnX2BRxoec4NnCk3BoEKAYM9x2TEMxUXwvesceO5ILx6wGriJFAOXCipNzpUi7j1F6k2sWejGuV9e44XZOaaztU2cBlS6PGt3z2jXQQGZV/DmTF6sFsb1dbEadm3LM+oDai7g45lfS6KAGk/zLzSHxa6b3Y430VHc4qFU5r5TP/lupT6mYwXkek39l5SI++094vPwLM3o+q2GUFBhQOhsH/EMfVYJ7nu7GlMidtn07rEhLaCTc6VwLaJo7ChN2DYuqmtaxB+3WzP+Lm/V60FhubZUt5hnyFLOK5RJeIUrWGweTqR7LgcwFaj5gGp2XzjYl0cmLyEbq/tOORvU8fRnQT2XAcog50oRUsyQOZ2vOn9CTH7X72iv/Ugq1o5RDpRRno00F0sRQ5pPbP5oO35p+KItSx0mihuN1B9UAOA/u1fRDI2do7lZpTip8xfOryolod+WknBQEUD4bL8B8H07SA5px4rwMOd09XaycWW+0QSKyLlSWPZRZGkil+K8MzoaXNhxJ4EsoBc5CorJtWf+ozqGJrSswPpbb25LEAMaKqiuNIhEgooCIj3n5cH8uCaaW27TVVYPYn+7mlomjxPevely7sxc5sGcN9Bf/TdFH68OvOxVmkmz02ZaByoT+AdQSwcIPElrNQYDAADoAwAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAARAAAAdHJlZXMvdDAwXzAxOS5iaW5jYGBgZWCwcGxkYGRguagf6RANYvye4uegycDEwLo919lO4AMDAwsDg4bjFuZ1u8P2VO35AJSYFNNiB+IfmLl2N0jh7W0rgQqZGFhUJk6ys73Mu2d+k8+eD2DDNRzPlx7Z3Sb9fPcBoMK824vAClnD+TLtVkZs2RN38eierJ64PUBTgLZMs/MDM+zi7WQMGBlY17ZJODh5zdz9AciecdXYYfWW89brD7HbAF3JKq7r5yAAktgsruPgapCzZ32shzXIDQwL2u0aBXZbR2yWswGZ1uV3zk6TAeyLCkeQDpYb+6Md8pfl7/yUK2gD8d4Wxxxe9j0vI/5bg3TUygjag4220XV2MPF7snvBze7dIKM/PhK3X5saZF0rutUGAFBLBwgBY/CRHAEAADwBAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABUAAAB0cmVlcy90MDBfMDE5X2F1eC5iaW5NkntIU1Ecx39p5nOlSzfNBYsexoqly2za7h733McssMBItKgtorCyLHoYSGqEI4xSgqxYDy11QoRii8LOWBaiVDYwgiLr4j82IqTQijTqd+c1+sGXwzmfL7/veQEAJKDAYRKhpFKUqtxUX5DFaEa0ji9VXn4OoiiUPMbKvqM5IsBmEo7bRXdqrIGm+rt23VuVLRrRXFS0IthuEEEa5YaKymhfkY+eChntPXuv2eQecUovuSe4OjjQLxed47UU5pfSBY0r7PfKT5sXIEpGyWOkpMscJpCWs6XU79cF5KWKWL8tF8d1ijdSwXM8fFooyr5sKKXN01dN8nIear2SHckFlgOpjhthh6j6ewPtpWbbOYPXkoJEjUqZ7Vc7QaD2IlE5u6lw+w/1joetZ751rzUjyle8M1VCAIo4cuk4zT3SSPcfzV8rrxagNih3M5M7wAK8YV+0Hwv0aRMDg/uub9jYETTFI8lGxf/rZ3cAdLHDh9yB+/zJwOSBJtPtWw25OUhMypvMk22PNSLk9QgHbTeYjkDH41crH3Gr+4v5GIXHKF54KAlQmyFMpXcyw5PVTGN+PlnmbeESESWhEv/PvSUJw14bLVzXyZTOSbDrP+QR+TAaRTP30k3g3YjwOVTHlPV0Mlkem6P1qYFYEDFKz8h5kzU8/BzjM9wDlq9rmpkt7AQxT4ucFlE6Svsv18dCKJlfdWNhIPP4L4sUvuIInwgTKxKb4o2Uq56HbMK3vi5njK5+5uKTl6R+IEjs8hdWzhz5f1v3CJAeJegfNPRqK5z0cGomf2eJi1Mhmo9Sze7PvFqAShffvnSl5Ueakz5rU/PPx36xGYgWoTJmc6tTBZAoFzOQ1nt40M9savvOCav8BB8TiOKNVGUOD2Dh+kM+2tR8k9F3Glg1ePCzAfBKdiT352+cisQ9VUw9QQ/jjdrG6RZr2UxEOlTmbL+ggYcrPl7qukBjQ0Z63VhDXKNpnIBIVLwztRS3kcyer4lm3pfttu4Y/Oh4EZ/kcCIpRP0FUEsHCNpn7xb+AgAA6AMAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAEQAAAHRyZWVzL3QwMF8wMjAuYmluY2BiYPWcVG1XwsDAwMrAoOEo8IGRgeV2gr/Duzlzdgv9aNnNwMjAGmOY4KAJVMHCwFABVAFWauF46GnBHvuLb6wh/CmOvRO19/LPu2HNwMTA8i7Twg6qsMdR6tdn68Xc762BRrOe+Jnt4K/51rojlMcGaDRLwkU/h2gQ48pXB5gdHkA7gGaonhS25z40Zze7X8VuEH+SioB9dsWp3U+jO22AdrDe3tYJtgPsqrPzS6zZTW/vgTlusu2c3W6sMrsh/nJw1ATZ8ep9hAPIaNYevVV2PVXCe/y7T4KMZn25aLGdFeemPTreHntARltvnAczeoUjX/NCayUhZRtQyKQKFjh8mL5kl6OaoA0AUEsHCACSreMLAQAAPAEAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAFQAAAHRyZWVzL3QwMF8wMjBfYXV4LmJpbk2SaUhUURTHj2uOWpOWo9FmKrZ9yNLMmrkzb9697z2tFMMPJViO7QtkRUG0oEZa1pRYJhWFIdkiRBFt0NxRXBpS+mCLtE8lLWaUadhk65nXm+jAjwf3d7j/d+89AAA6BKJ1SnGjXVnQso34m784XN/f0fQ+u+SHyh/x04BGqwQD3+SoeMqNPw6R7uV5xkkP7tMAVIGI96vWKSIB7BantFBuSE3kvuUkZPr/vSGrZegrlXv0+0jrteOktf4KXZFWJA7xKmSIL/f0chkglya+PUBan27kmcZztKGt3joU1TBkqC8AFAp7C+RjFQany7+KRBfctJS7aukMNMla79+yiQATaO+WTuftpXvIM89PweZZLaSgmallq7kpRAbbSckcWk3u9NeRWaUNgnvdSlGPajii922XPUaCWIOcveMokVcdIW12i/A72SKkopql9aoV+4RBUqZ0d3YV6Vl7kdwlOaL+1yEhDdVs7a69Z4atWQpEVstpwgz+OMvP5Dn4hikZCVIQqmAkyHd/g6MU8CyQm9wSH13w2bGZhTP3YA3zvmmo9rbqObqGK7AhQgqeT7m9fz0PqSmjurZKGoEqEonw/d/hYQrASHawj/KWpNF8UX4JbdZNtM5BZdR61RL0+L7hYqlhJ39+ear59S07vZQbYDWhIlq2misUMgik8rL4ftMbGsabdjP6aaCMjUA1Ehnxb781zDtcL7piSIJfufO8UaSral8SMyqL1qvW3jMSFLslD57jaHCzo3tuYAppKGMCKqt2N+q9xH5gkL1Hzhl/jr8KrzRtS4gTciLipTBU4UjYv3m+h7mUjt1XxX+Mm+y8fiPG8r7IbY5CZUCifLmN8QxelLBpuTd43Mft3G3bZZ73c4cJhwio1vu3LuFSp1i+f4nz6+JBde5Te08kYwhIWraam9QhQUii7KrYRHoXhzry8rcy5ZiLRaOKQaJ92z08K4GtjnV0ZZD6znYSOqqQKRd0ouyddK1XrfTxuPSQ9vBMR0fhVfIoq4m1L4wR01FlIH8AUEsHCONUZNQCAwAA6AMAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAEQAAAHRyZWVzL3QwMF8wMjEuYmluY2BiYPWcVG3nx8DAwMrAoOEo8IGRgeV2gr/D4s89uxUi8ncbMDKw9pqKOShrlO5hYGJgcY8IsxP4AGQwODjZzfW4as1i+M0apOmvfqLD2g891v4z31ozAPkJF/0cokGMK18dHDSB5rMwMHg4grWqnhS25xLt3Z1bGb8bxJ+kImCva7ltN5N9uQ3QDtbb2zqBdoB1VDimacZYB3se3fMB7EILx0tze3arZPPshrjYwVETZMer9xEOIKNZe/RW2UnsZtlzPHkryGjWl4sW2zVZL9izwtkE5HxW643zYEavcIyOmWjddFjIBuT8FP1yh1mhHbs+/rSyAQBQSwcIk8duNvgAAAAWAQAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAAVAAAAdHJlZXMvdDAwXzAyMV9hdXguYmluPZJrSFNhGMdf89LWnPMyLQ3CFIuWtalZ6fZOd973nFmmFQWVX3KakLcskJCodKJTaETZRS3MFLyAmdLFhHa2WalfCplKaYGp2UVYX/oQKRk9O575wI8D5/fnfd7nOQchhAIAtFFqrHJajc/6TbjQ9ck28H2eZJqsrA+odYCPCHIaWPR7iWtoVfPFB2qwypKoTb0zTnxB+QGep1APMYtQDWPVaHhlYzjvfb0DUInZ1Yo2oPklLiIl0l5fUoNLzfL08jQX2QlGIiL0/efi0I1WdmWoDl93FOCeLdPMY/s9IgcVBMi9x7kHIZfB5mXV4vaZZny14Anj19JkiAe1S8yu3i+BRVVydipeg8crb2PHmJk8UhJmNyi1OPN6T64i24hC73KoNJqPG/qhHdB/o23OWNZf3Ju/d+blSCP6c5RTRyTyb/G0rUsVSOPetVIpqA2A1DvHl2AjOh/ClrxR8wVBJ/i2FgtZaLlJFKCCAYX3freCjAgpaVaOhl/okfEnT5vJK+l2gwZUgpgVKl0Bew5kKkbzeVNdlP7riJX0nfI1JIJKEnsLfdPLKPIjnP/ER11R77LtVxQlOW4LDQEVCoSsnVdIPR95tlmKu+9ftHdrGXKsfQ7vAZUsZoWq74T9fWa5YTX/s7bP5nmFHRa6F577xN0Ie4l2U3SkjjtzuJFvulat63wQkL71dQwrAxUIyNb+qwnoS4i5r5a/krzJfu6DJM0tea4PA6UEwrx9nbEUzZrpzGIHP2jL48dyq/Xlfy/r9oNKEbOr1c8g9J4xHcywNxyf41cmz3pGQKmAVuwt9NW4WCTZxiVl5+BLiqWXI/oKWlk5SsNBRQDh3uOmuliU20EvPE3G+eUvsCyyjBp7pYzOM7eYFepQDIdQGfEpVtlKBxexY3KYZhZtNuhBpQH/AVBLBwgWKU6fsAIAAHADAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABEAAAB0cmVlcy90MDBfMDIyLmJpbmNgYGBlYLBwLGFgZGC5qB/p4Adi/J7i56DJwMTAuj3X2U7gAwMDCwODhmPvttrdoT+C93xgYmDxVBKzf8VSu7s/r2W3AVQh/6EMkBzrRd5VdmcnPt5t7LB49wEgP+/2IqAhQEY4X6Zd0MzZe/pMJ+x5YqO0B2gD0OBpdtFgRkmYHchOljVNjmDlLAtr7OxaXY9Zh0/t2fuBkYG1Xs7LYeE+I5vV1tetga5k3Syu4yAAlGAxf67pkM/CvIf91qo9IIUy94Id/Pk9rA8lHrAGmdjldw5oNNgXFY5gHTf2RztMOcdmKbiXyQbivS2Ov3Pe7JZs2QfWUSsjaA9W+FmqzCGVqWt3gc9yG5CbPj4St2evc7G+tXSGDQBQSwcIv7+LRxgBAAA8AQAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAAVAAAAdHJlZXMvdDAwXzAyMl9hdXguYmluPZN9SFNRGMZfzallptl0S2uuTIIwYuracru7u2fn3msf5AdTK6NPwQgZqz/6UCMzKqyIZZ/+YRmLlKKQwhbSmRYWFUFZIUSUK0Kyf4zKECvsvdtdDzwcOL+H85773HsBAKajQciXocort99bxF5V/rRv7Rl0fr3VJsYgikUra7yS222SAUpcU6MLmad8ZtCS0OL88/mqYxqiOPQ01VC9RIbQJ1q1KZtZsvaxu78MTltMA5+AKBGdoJ4JWzopGHPl4aUu9tNmYDXpemexf7IoBVEqWlnDCp2nOMGlbzUwc0NcUNmik7d5M67L1WxY4wtl6J9B03IMrOB4Lqv211nlkRNWCyKrOjuiOgJN7+jK/bODSz/XsdO+Mm7QFs/nI0lTHZazgELoEDXaTjE+dQ37Pdzt6PzTaF+BqEh95vBzwBMCMERKJ8zB+c+fsW2PNbZLvTsLlG5N0Y4jBwoA3aTzIAl+J4VBbrBdGQkF6EK1a6UbuJ8hw/I7Uu2uHVyt+8D9R2MB2tlTLmrU96CJ9tz0UoJvK6QJUz1XfcXJfUx6RmKzbtAkRDPRSdH7eQIS+IrFkpY9XGvDce7tWT/RtF8UtIjS0dro9TZgDozCyNBe7mbvsj6D7xyZdAd4GyK7mo0oxQUdvLjKM8ytPnKU8zqm+P62owKHxKHOjvTSTcBnlRY8SAjWzJM40+0OIWDvohlIdOiM/+eVYn+p5MQjP2vxVQTX8UTYkfjDySuNqdmw9h0ToWtUzJkzac+v93Kvh2w0S6elWCoQtZtwL+4aCfSx0pt1E71P3xuZfX2muP3CZpqMaBY6OXo/a54E3i3ilUrJHvfYwhrXpon9D8eIHtFctD46t1ErQYhRc3NXUWWdn+tx/6J9uh6XS/kO1WxYXpOITdH5A2dYdq6Ha7bkEd/eIwQ3QVJnh+dO/MUt2eW4toQtvu7hygYq6BdPOslElIXOjJ7XpOS8wlRzHjuZXea4XFhBZd0NHn9CKFazEeW4lP5a2sftpS8cjvyNH4TD9cnCSiSr0P8AUEsHCFJp1MoGAwAA6AMAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAEQAAAHRyZWVzL3QwMF8wMjMuYmluY2BgYGVgsHAsYWBkYLmoH+ngB2L8nuLnoMnABJI6YCvwgYGBhYFBwrEuPGX39vKfez4AJW5vc7SrcmrbXXw7ebcBkL8919mupDoQLHeRd5Ud64Uzu3+/mbT7AJCfd3uRnQBIIpwv0+4fZ8+esycb98xiFtoDtAFo8DS7aDCjJMwOZCfLmiZHsHKWhTV2dkcLN1lf4Knd+4GRgbVezsvh4D0Fmx1bD1oDXcm6WVzHQQAowWL+XNPh1JXXu62OzNwDcewKRxnnYutlyo+tQSZ2+Z0DGg2WqHAE6WDdqeLucCJedPd8bztriI4ljmJXnu3+8isdrKNWRtAebPRnqTKHbVkVu6dPnGYD4rM+83VY8+2D9YFFUnsAUEsHCNW7lToXAQAAPAEAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAFQAAAHRyZWVzL3QwMF8wMjNfYXV4LmJpbj2TaUhUURTHT6NmojlmNqmBDIWlZYpj4zpv3nt37ntPMypLMzKbsoQWKRMRgqIxy75UTJShrQYSkh8Ui0TxTraIBi2WLZKVy4eCzBZbccnOzLzpwJ8L9/fnnnP+jwcA4IcC0aBAbrHSwYcw9qHfFDZwUyj9Ui3NQKRBOc+ZTl9JvAKwxlJ4JZhZz06yeCgVjtiPmb0QeaO8VEHeUgUGh2n5Xi1rzrSyF/fmCKvzrLwvolkoX/VNgDcERqOVkQsV7Ldey+quPudfXfPhtUiCUFrw1H0CIIiNtwLZs48XHM4bS2IBb8QzUfW6qraGgj5SCetdwqJ2BbL3P8fMxsZHqUmIktXe7ioiYOunUaMax92EHFZhz+J0pyfNBiTBqlwlJFAYLKdeGhtLqU9i4wNN5l8TB00piFLVnd17dON8L8lQ5yKH7egtFtvalworBw3ObOM9GbsfFAGayKGAOIdgWujaA+o1CQl4rFCzdmYD7ToFEm/Ibw1ZXPT09vam2haaTdZJPup38PHkbOuR4WuKPB6zjdNsWc5FdnaRtPHr1B9RAMrfM9/eFhns6dLEUD73mh7g1pddJU+Tq8UQRPNQIZ7xNqEP9GJioJXTREXcjrBXkYnsFj4NkUn1uktrgVpeKtE94BYvKuH2maf5jppKkUNiVnu7c2kiYE+W6/J+MMcqA7c2ulYsi6unOiTzUbr/763F/ILI3x1nWIZRcGzkibhz1neBdyamel3VMxfnmyuN+YVy6b9OckXTdbS3oF3EUIGo2bhyyd4hQ6hGXlwx0HaxK4hl+IZLU3usdDaiQNRsz3zJMTIUb5Wiyw2m3YWRbMwYLH37NEJCEYWhQj199fslGByQ2lra2o+/GzV91S6l+SceUwsiqnrd6+olgMP0FLWzvskgbnPMHXGd1EDwEmS1t6vvnym8UiyXq8LYhocbOKk1h14bDiHhiBagwj3v2Zy+YrGZLGBTRpP5yoocqsxv4PEnhHTV665YHKVbXHb+HFeceYdVfvYml57kChlIVqL+AVBLBwguAqm0AwMAAOgDAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABEAAAB0cmVlcy90MDBfMDI0LmJpbmNgYmD1nFRtl8HAwMDKwKDhqHWAkYHldoK/g+wBJpCIgZ3ABwYGFgYGCceOS567J+TJ7JZd4Ltb7cW3XQaMDKy9pmIOnHtj9zAwMbAcKpIGKwbq8nCcYbvXeoHDQusPQEUL+OIdfsVmW8e/XWHNADQ+4aKfQzSIUSrr5KDJADbew1EAqJTl4WU7Bx5Fv92RvxV3fwCaOUlFwH7Cy2m7K57a2kCcaAFUCJQIDRW2X8zquzv7mvduiAMrHFsfPzGf+WPjbpBjVE9utIMavcZRAKZiflyr9Rfxxj0gV/2QinFIPOu2R1/4HthVfPEVDnCFkXeVd3ErtIDdID9lp92tyBvWx5gP2wAAUEsHCItxI8MHAQAAMAEAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAFQAAAHRyZWVzL3QwMF8wMjRfYXV4LmJpbjWSa0gUURTHTw8fmau2Zm4SYVpqEaWt1uru1Z2Ze2e0F0kSISlFBVlKhLhZGZgtWj5KSq2sRBHKvoQFvnCmFnxkmZVmsV+ixQqijDRKkjbr7O7sgT/3w+8/53/PmQsA4I+C8EVSqa1a6u9cTVoLmuVR0S7EzlSyeYjmo1znApfPxjGYmRU7rzjljs9mcsdSZApofym42ELV4/JDM2EAVv5Dx5ysy2yUc6/VG7POGVP8ECWg/NSe4GigsP8jPbjpj6y1gnK27KLR/wnRByPSo1ynp+ooQDe3TnLK+so+Wf9aY3jsyDAmIklSsz0VycHErBjTEPDIupojkb8DzCXHXwibkASocueWnxehO19Mt+wgzkI9uc9lcunyE2EJIi1qibfd/i8UbHniXHU+GarNIHtSm8wt8cBtRrRF9bpr7xcGuu9MjgglXXG7SU1ym3D0QDFvQJSs7sQ1MxTvlEDbIBobJ+V3D/uNVZmfaFJCFPNB5Ivy8e45IUqCFQnixbz5itZxVZ7s30XHT5yiixEFohZ75/gRJsGUwE43O2XLjUTl69gboa9oWAhFtBQV6r0f9ZfAkc3axkHZePqZzPhyIcu5UkhBZFS97qrF/ws6/merSXmb+40cqR8UVmwN5EyIiJrtzk2/xWBqgNmjQLm9dra35O5wYpXmFA1DtAwV5u3XfZO5mpZHg+L7fE7OrijT20lQfCqiNNXr2fM9BqWHqCHocvJjS64y9u8ktcVNp5kRcepu3HvZvkYEu6/I+wyYqoOt8mjkAN17vYRqEAWhNN77hQSK4HhK37+8YNowYiW6UYVGSjl8OCKd67l7cw0zDJorqNgZQ6ZzVj361fOANn7O53lEgur11BAHtkHaU/pb+TtcSUZa4s13unby+CiBqdnuXKePCLCPt7yqlguWRaRGXzpD6ydizcsRRaCWe9tNdTAIWc/ax5/3auLWKDVNx2jdNguPH4Okej3lwPHtXKyhgnT1F6ZWau+l+fGH09KRZKD+A1BLBwjoqTYe9AIAAMADAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABEAAAB0cmVlcy90MDBfMDI1LmJpbmNgYGBlYLBwXMbAyMDyxNHPIZqBiYF1e66znSYDAwMLA4OGo8AHMEPC8eFi090vTvLs/sDIwMpjZOew11V0zxTnhD1AHSyeSmL2AkAJlvtNdg5zPS12P39nCVLIcpPR2WFSmfNuvRLz3SA73v+LcJAxANrxndfZLu68454PQDbrx5V2Jr8P7w7Ub9p9AMj3mrDITgAkcet2hp3Wr4Y9kzwL9pQmM4GtmqQy1S4azGDrB7oSyGh90QtWzpJQkW93/02ftd5ifWuQKwUPhDp8FV23e/30R3uAlrPuswx2ALmStVnU2uHS/ZW7Z4sHgxUyFYU5OPiE2dwy/W0NMvF2zTlYAFQ4gv11Y3+0w/MYaYuCDbetIQGyx3Hp1wW7N/YuAuswF5OABMBnqTIH/7eeu8X9am1ARi9TsnZgCDA02/f3mQ0AUEsHCNUgMAFDAQAAbgEAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAFQAAAHRyZWVzL3QwMF8wMjVfYXV4LmJpblWTaUwUZxjHX0CulUvKLVAk0lRaBEHpwu7szM68syP3USzVktLYok0lio1Ji0GDR3SJGjFSCKHYtfSgHywbWCrgOwuosfWDhi+gDZJu0a5g8Qh4IRvbZ2bfNfFJ/nmT+f3nueYdhBAKBiFjpoQq66Rzby+Q/A9t+oHzNo4/1yZ6AfIGKae/4vsoVUIjLhzzcIZYb26Xw6dDuZaJB6wPoGUgHyr0yc8YJaVIn66PkKvnnOTIdg03dWmtTskRQHMpOZGjFcObwvAb06T273tyzJWDusO/W9hQQGEg5XRHC/gGjH8G3SZbXT3kwr/B2gFHnk4PhKFedzTyCJn5tLYhmUkNso+NxrFNiZGsAQhLa6t1nyTDHBpcPeIkp28skPofO3PfCW3SrgAUDlrhSXfXR0J1z8VlVU5i+WKGNHyToR1/JOZyysqoVw3OD/prNmZXPCY5Zf+Ql0XO7PkXp9KhGSTQ3Xir806Dr0Ro+bVI5s865cvF29hD1q8NgYA0oMBXc9TyqHESZwvzckoplme/rWHiO0LZXCARVO66WRg5DmD0Yo+cciFZnh0aNtxdatBDESTSnOq86A9oZYLPOBBtL3d9L5vmLbmdtqbMSCA6UOSruhyMZeX7tavsS2lRduXJoH9vlglOic6g3oOaKAnd6TOl/5fKtExnkY7C33BBX5noC8gP5Ou5B+0hEmpcxNv2v8Uc37KPse004x7NeWE5oCDQck9/HPhQL+9nWMP8cHSX/VD1Uezv+IuNBhQDiva0d+aJCZk7xKjuTGbx2KR+fMNVYdPEGrwRUB71usMMczTzX3Zslq+dOWFPutXOsNYGNh9IAa3t3ksmRo0WHLt4Ve83183U69KEsTJWiAUSB4p97V4l4yuVFfLoAx9mR2+9cSk7QSgEUkS97tAIiDuJux/6Grq9Opl815jRMb5aKAZSQnej7sVaY0Ix3qa9C9cHVwcskNmuWFETV42VfzEEuf9JtT/tuybkqBHrO+P15W3PSG1AuHjfdo9fCSgetNJTtiECfDJetf5ijqm4idkX8RRrA/qFUkBl1KuGIweuRQYOycqTE9cVMEu3v+LDKyS+HND7tLZa1+wFnzyMD/llkaTVJhnmTlfhsd3BxgRAiaAET75CxVdn7PrcRa6XJhqm3qzCYbqf2ApAm6iX7g++h8WIrFPvtX7cbFj73WfckWenuA+AVIL+B1BLBwghMEkqhwMAAIgEAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABEAAAB0cmVlcy90MDBfMDI2LmJpbmNgYGBlYLBw7GVgZGB54ujn4MTAxMC6PfewrcAHBgYWBgYJRz9N9d3TuW7vAUncNnO2g0poOJ50U979O499zwcmBpbtMmL20ipqu39O0N8NMur9vwgHGQOgju+8znZXc/VAilhZP660E03asFsnNGv3ASDfa8IioGlAxq3bGXabNTL2mDlF7GHd/Go30CqWSSpT7aJBDM997XaaIAafehtYOcvEr3l2PxY2WK9Jr7b6ALQsIifd4Vbolz2XBPP2Ai1nfV4T4iAAlGDlDzF0eHhyyh6J/XLWEFe3OLb5/rDW4rxqBVI4r9zJAWz0Z11Be7COuKVWDlznZuxenqOyG8RvyDV0WPcj12azv5E1A9iECkeQQpavfjEO3N/PWhxo2Q01eotj1oGJu6d7eVoDAFBLBwgQsXSSLwEAAFUBAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABUAAAB0cmVlcy90MDBfMDI2X2F1eC5iaW49k2tIFFEUx49prlZWpq5ruWWSPeyLZKbuzuy87uyolQ9KtDKywohMM+hFD9gkU0GiB5VZllmQ9jBDC1pnVpOKSsMEy8gQS4u+SE9JcKHOzM564M+F+/tz7j3n3AsAMB0F3AoJckqknv4P8t6Meqoo+wo7YL0o+iCaglLXqapvU6wEHW7ivtEr727MVL77+7LB6d2MLyI/lK/uBfjIw+gyyXpqveIw9cohfe3Mkf6fNgOSAJQBvPGUB2C567/fyNe+VrjUnc2VW5iVuCboXi1f3SUCUTFSTbVbbuvrkd8WDNrGmsKtsxEFo2Z70w1VEgA3f9TULT9Oa1TyRn8lZhXuopMQJeteLcaisY5pJPpej5y0f0BOeXbOMnJoe5IFkVWvZYqW7zPmyxAWmJOVhWd6lE46k2FKUm2BiKahAifr2M2DY4CkBX5QKprilNErBbSQamBWIQnRpQUbT2DoOKk5nKdY989Rhp3tNqv7KEUhovWcnv69wL684+9uDHAN3z+rnN9QailsMsaHIklEhU6ey3IAzXxJRLBr2zKDy7trQzF6DVqvC4wSjLTYb32JoE9+WSiP+z0iYcVZojpTf3226uzgsEGC5mKx5VUIXZqTRX+6uYXkxM8g6huZob8V7X656IMA/lhlGN3Z3+WS+vLIm781rBFROMrovcjVMTucThEPvIqiu6LM1NuEl4Iz9rvAqk9O93qimVNraXhY7VrUFdoeNpLNDk3dymATQNDP1s51lBP4ESu2uu9QB8zH6ebOfUJ9dq1gQhSBMk3mq+Agv4xscCe7BoufU7HjuWxaY4mAwwRR92qR7y8CO4fsi7tMO2PKqLOWM0JCQytnRyTpvdH6EtcgwvtKe+Ryg+IsSm6Lub2UHDEsEYMQzUQFee+XfxPT/+EXm2Yp206l0+uGo8m3rw+4uYjmoeZOjs0ogmOFWOXDKL3lr+WdPmVCy8EOIQVRqu71RAen/pGitlDbteFBSqqqY5215VwaktX62Z7/wdshql40P5xFheROyIXW+eKFIIMQiciMivSmu7vEDnX9ZIfTYflRsIs+t8dP/OfXLaxBtFb3evpyAusoJmVxqxS6doJ6stTCl1MNfDqiDNR/UEsHCB76L+RDAwAAOAQAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAEQAAAHRyZWVzL3QwMF8wMjcuYmluY2BgYGVgsHDsZWBkYHni6OfgxMDEwLo997CtwAcGBhYGBgnHn4Viu5WUj+4BSdw2c7aDSmg4vvwktPvw8c+7PzAxsGyXEbN/1ia6u4pJbjfIqPf/IhxkDIA6vvM62xX9kdkDVMTK+nGl3Zp983Y7PgvafQDI95qwCGgakHHrdoZd3seAPf8WOu3ZYXV5N9AqlkkqU+2igUaxzit3ctAEiSi2hICVs/zYJ2EX+rbHuqlN3voDUIUgh4nDnlnMe76sU7MEKfxxrx2isGZ/q52qcby13xGhvSCFfdeDHTg+fLb6/WanNUjh7ZpzdpoMYO9UOAoAVbDc2B/twJH82eL5903WEH8ucUw6Nn33679aYB3mYhL2YIWfpcocrhzX2t3Mk2wDMnqZkrVD7qFbOz/anbcBAFBLBwhfj0V+MwEAAFUBAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABUAAAB0cmVlcy90MDBfMDI3X2F1eC5iaW49kgtMVFcQhmd3RdldoEKQlxoptQ2CqSsILsve97l7q9DiI5SkEES32yA0hhgf1KiFaoIa4ouGUqKpEROTJsA2iEQ4lxKCEUJaWxXiAy3ZakCJTSviI2Li7OVsJ/lzk/v9Z2bOzAEAsKNAytCgqErbMTNA82JPu0+Y6kTPaKNqQmRGBb9hQV9xmgZ9s8TRSmnbcK5+a+qJIBX6BQuieSgL8wKMyfB0hfZ7vqBfXEXps7N+ob5hiF+AJBy1AEIxIAOI0t4oSqcq9/T2F3GO4qNbhDVIspjXyHfuRwLJH2rLP/+bKhE99MvLV/j2g9bcaEQxqOhQuvGjBGBWbmnvondLmvTZ+Om1qysrOCeiHOY1YiYF72EjP01204RDV2l9c4Or9YTX6UKUy+5iNvIFMF+BktX8kV5xvVtfWMoLm9M+4K2IbCjr//f4Woaae+R47oC+z7JM/++Mj4urByEbSSyTEWImgfFaUrTDoz++btEnu3/lx97sd7sRcSzn3PwGcS6jsqlqRu+Yd1jfnr452BosQq1lX5ZQAvDLjxrNvQfWT+uhvzxKYHcwZu2L0+BhhydQa+NeX4qmBe2dxOvYqAZ3Op/t1mKclFQotGmxG8+74797j6vOrFb+bGgkwTcSwd6K0Z/4lkDfYaJNx3C3K1bTmLF+6f6mUiUOUTwqLtRIzRkCNRL5OdXBpZRfc/eXBoQ7ZR2SGKzEvHPxvgLiVlJZe0H/5Ys/XMeuJsq3X2QrOARQWG2jbsYrD/R51ZZrVu7+TolzlaST/gsmkoAoEZUQSvfPSw++Hvnlt3Zu2+6u3oy/UkmK4wcRlwkq886Nz0vg3zQ1bE+TO6e8nEvKyVPMH59V8DBobDbGXPw+DySYPW3ZdTm3sn6jkVqiumu4lEQiikJFhvpzrvTAuE+t77K7N00M0pMPotWV1gk5CdFiVFKo7v5Y9Onk0dImV6BzC7fB8oI4wzuVTxCtY14j/MkqlB0jb7o4/St9xG3L7JGSl/nl9YjyWG2j7hETtrxQjrDepN+HRfG+shLyQLRLSxAtRS0J5csP+qqkoW9G6I2JSL7ueTFpHmwR8hF9yrxscbiec1L1lSM9RXW1/ETAK97oOyV+hqQA9Q5QSwcIujeDyUgDAAA4BAAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAARAAAAdHJlZXMvdDAwXzAyOC5iaW5jYGBgZWCwcOxlYGRgeeLo5+DEwMTAuj33sK3ABwYGFgYGCcfJaey7s3M27gFJ3DZztoNKaDiyOrLs/pt2e/cHJgaW7TJi9kyT2XbnmfLtBhn1/l+Eg4wBUMd3Xme7WZ68e4CKWFk/rrQ7d69vt9V5290HgHyvCYuApgEZt25n2NXy2OxJ0dbfYy+9bzfQKpZJKlPtokGMbT/D7DRBjODfjmDlLGmf7eyi74dYzzfK2vuBkYG1Xs7LYdKuD9abxAqtQQoz57dDFO6XbLMzDXhrJSzOshfi6hbHyHVzrYVkDayArmSdV+7kADb6s66gvQDIqLilVg6vLrfsdpLlBvmL9X6esL2CeK1NlIa1NQPYhApHkEKWFKcUh0O1fyx11GVsQPyoynKHO8ahu3stzlgDAFBLBwh57gPwMQEAAFUBAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABUAAAB0cmVlcy90MDBfMDI4X2F1eC5iaW49kwlIFGEUx5/HerSZmrZqbaVSknasrZXbOrNzfTNjpyZW0GVRUmRJgkVQkBVpCxHRYa3ZpRYrpWxEBTVTpkUHZRIdUhJSCkkXdmxFG/Z2nPXBn4Hv9+dd3zcAAEYUcFYZlm6R5wiXlabte6kJ20rY9ZXVYhCiYJT/a/D7lmfI0OIjsU8bFXNourq7/zkT1ORiQhCFokJ0L0AXD5/T5arJU1TTqkbl6rwGRvK6HeFIIlDhEIi7PADL2dhGpfL+ylv+kxXOImYmfmfpXi3fWReB5IlyYc1j5cVSt1I4cNJxPc1nj0EUi4oJpOt2EgAfLy06r6xKdqo77N+zp5VspGcjsuteLX6m4hzDSGu2W3nYelmxnT5iz3CuteUgovRZgrV87zBfnpDZP0qNS3Grbe8tzN/0UEckomGoyKE5NvFQ8YZArUe9aY5W+2uL6XVTvY5sJHG6tGCzCHTvJnuqrWqk8Fn5cOO2w+jbSdGIHHrOwf09wL285Nt7utTous1qXsxke/zivdPjkdhQ8UN1WQ7Aw9dGf1Rp72vVf9L3y2ll/ESfQdt1sUmGnitSVv4f6m1qiPKv7CrJGsgX/Xcapt+t/+6gokOCozYpyRhOt655RG09d48fMDQS/xsZrr8Vrb/S6xIcyhXVfyF00OqxtLzhDH8p7ARnQpSAMgXaW4Y+SOZcRgNdXzTy9nL2GH/z2TUGmwZe9w5GtABnGbG2vJq2NJtoizzAPHVVcgISotfW6nb8EcFTKlrL91Om6Rl0b7NIarxGkogoCZUYSNfyW8TXw6cUHKU6zedvTdknkNTM4ywegqR7tejIFaEigXxNEunCCV05S6LCSH3GNU5GlKvvRttLpluETqcUYfygXKj5dONV1STyojlNjEI0AhUV6G91A5b4wa+weJUZryja/jKVbL/o4UYjGoMaPXRtJqxrFXsj0tTDPU3KAdgnnNrcIsxBNFf3DsZ+XNUzvnzaOEfZtz7q5J09rG/8QW4ekvl67cH/g5cguU78XRBMtantSl7iOLGsyCCYEY1FmQPpunNw/E7B1X4q51dmG136JEG8UNXKL0C0UPdq4T6G/d0XNrIG1SPtottKvvCWI1O5PET5qP9QSwcIeq4m8EIDAAA4BAAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAARAAAAdHJlZXMvdDAwXzAyOS5iaW5jYGBgZWCwcJzJwMjAYucb7OAHYuRH+jloMjCBpA7YCnxgYGBhYJBwXLzj866EdfP3fABK3N7maJcaILybMevTLgMgf5JKpp31cR6wnN6sxXbMcpq7r+823w00hGV77mE7sGli8kV2UNM0HP9k/LUssNME61heP8mOd7nsHiGGM7th8pv2fNrVJrEabMIklal20UCHsc4rdwI7jEWxJQRoFJDxY5+E3arEDGuX9R+sPgBVfG3XcZhsrLyHteLyTpDCbdf6IAqjZ/fYmbtaWns5FO0BKVwoF+wQ4TrX6pD+PmuQwts154CuBEp0LbZ2EACp0KlWcQhYL7NnvV0w1FUVjr0xO6y43ZnArupQE7QHKxSQMHbI3D9191t2zt1APgvrM18HIa191uHtAnsAUEsHCN80+a8tAQAAYQEAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAFQAAAHRyZWVzL3QwMF8wMjlfYXV4LmJpbk2Sa0ybZRTHj+VOwQEGysUsCwGjjllL2ID2ffvenrcveClF0uAuqSOjuA8wjf2AJEQI4gdENj9I6YAxYqILmnARSMj6vNiAi2YqXviyMMMQWSYIM7pgRMV42j4l/pN/nuT5nZzznHMeAIA0NEilGtS/qp3uuUrTPmzmgm014iW7X30IkQEdPhPDcVazBiGJEO8QvTCs6Q8O3xcq1suEOETx6DhmOP2kBmtD5I/lADVYdumJokXh8wSrPQlRMjqJ5QT4QYadJ7S9B/m6diFAb7gGhdrei/ZDSDLQhyCmz2QAUWqqC9C9y9q85bdCy5mel4QKJJUsNqLRywSOFGtvFM1RsWuADu28aa8a3rRaEdlY7ajOYL5+kro3oX+TuEbDN6GVD6zH8cxkjmpOAXCSbu8y/fqjuzR2y6H5//UMoWQC0KiUbLXq/7x2jQ4Iq3ZLciOXgigVnXLQ77AMnVtKsUei7/a9o/f9+zd/fWqBz0LyCDrroG53pN+RhhFb2sVlveK9PptY6XrajkRgsVFNYr555duMG7oJOnRxYqS09nEnJ4ZXympHVY99uKRfZwfotVW3bpSnLOHbE+hytuPwTsCbo8HGtGOpYY3rMW4Hp8yz5Ox3LjWB7T8h1i9IKrhTtQ6Tj2s5ucmVB1oVetRPjOw/GWP9ivsEQt3k+N42t+hS6ZJvQao77FGyEeWgs2PP6xwm0CkRI5/Jv93i5xY964LfPC3hEEBhsVF9IoPoI6/DV7rhaHfw0k9XpdJz1QoOH1RWO1J316ABbJNXuta575ss/MhQPQkIY4oJUS7aFEvXEYmT3/Lf48znTfPNN92k8dOXRQcijcVGZcL3jZJxP+Gmgy18c1uWsvKYoFQhqWazicxl0uuAXIPjTqFm7TePU09Cnmrs9ZB0RA+j02PvC1ECuU7HYHu6Xv/CFdv9v04pR8qMah6ifHTeQV38p2uzpOj2on4sKV7flQdF5+9u5Rkkz7LYiG5l45Mb1ElfE7d0633q+DFOtdVtyM8hep7VjtT9cx/HpCkF569Tr6+Q37G7iSGYKRcgehRdEMsnYr8Zv6iK2ab/XP0x/TJklVfaq4kTUQ2LjeopXM8Xkn+mhT82NqOPnjLIJfkvii4ktej/AFBLBwhSmSHVUQMAAGAEAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABEAAAB0cmVlcy90MDBfMDMwLmJpbmNgYmD1nFRtV8LAwMDKwKDhaHaAkYHldoK/gyYDUOqJhZ+twAcGBhYGBg7HhMjbu4xbo60/ACUs/fTt1GZc2MXz7NauDYJPLA0YGVh7TcUcnvh67GEAsn/JmzgIfAAa9dfY2EGOl906ufTwHiCfNeK0qcPDORw2tjrq1kCFLApcGQ7RIMYpdpCdQIaRv5MD1E4HxxbLW7vWbOXfDTJqioyPw0HnxF1yV2N2M4DlWxyhCiscV0U1WXXdYdoDclzX3D67j0vj9yQXcOyG+KvDUcYAKMHQ0GJ3/FvjXpBpWlsLHCofHbZOSI21gShaATQNpIhhht0HkaN7dKeKgUwDmr7F7mFUu/XX2Uw2AFBLBwjAv1MpCwEAAC8BAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABUAAAB0cmVlcy90MDBfMDMwX2F1eC5iaW5NkntIk1EUwE/qNDcfzVmbj0RNsuzldKVu39V9z2WUrKjoMVpR9CKtP1ZkWegyH6RWZH9U/wiChRAVkfa4ewRGkMSWkEQvrCQjysrI1CA6275JB358cH/nu+fccy8AQCwC2lhLrbfFknDvFsOkLKGqkz6+YEGzOANVBBL4RgXyvKwI45PSaFYd5Rw+xp88QIoTnvKRso+UgQ4iAtRzzt56mnCmzdRuO0+K21tNMaj0SIy8J4Cfg8wiMcu6iGbtbKC63GYiLhwtSUQzC0mEcPRwAFb2tbaZmgtjSfrXxcsm3OnEgGa5nBuMoWYBtg8LOruTPvY10UMTY0W2hkrDClRF4TMEI5OF95OSbceUS/Hcxzz4FW3eP9zPF6BRyoT6G+Dh8rjEkDrTSN4Ac3qkk/3e8pBXo0lC1OHtavt4gBfsbv81hq5zuN/0b2Pj7lwxF6MqkXND0cHB1C8pta+brPntZzbYo8x/dnh5IxqTPOvAbKCs0QL5+eKBOaupI0ZDtKlOUajayitQRSOK8JyPVVhgZq307LCTJhm77t9cPywMvlWLKlRxiCp8Dn22BXL00tq7bbQ1YxGdN98qnNhzVNCgSkY04fYcSgt8coljO5uorvM2Lb760fgo3SowqIicG4zkHAlgrbDpSRwtVChdvbZtgs3m40oDrcu1g3XNmyUwp4m6PrspI+0drSqKF3NHznGzUc1BZk/XLZfAWyNs+JHNXL/Q6drVohJ3RV1izahYOTcUiTxYk8Sexyp3TUs3rSwVWH/jPg4fB/DybCKC92EVIHNC8HSdIge39DHlg+PcxbluLh5VAhL//zuACqHake2pVlwknqEuw4qfX7hCNDqZ0P3mCfgnr33lIDa7sjSJfcV9/hDB4iKI8p6h93KcB+8L4duqGe6XZSaiJGfZmRtbuRQ0qUjKdN292DLLL95yxH3USF1fleNm9Q0Ni0MFi5wbjCEPlrDwl/ULyRjXSaoMS7m/LwfZlajKkX9QSwcI6cPYdusCAADAAwAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAARAAAAdHJlZXMvdDAwXzAzMS5iaW5jYGBgZWCwcFzGwMjA8sTRz8GfgYmBdXvuYVvZAwwMLAwMEo4CH8CMDw5cWUd3HSi+uesh78Q9IFW3zZztoJIajkp7du/aqHNs9wegOfeb7ByuXjm865Le2V0gc9//i3CQMQDq+M7rbCci+Gb3ByB7TW2B3Sx2Z8sJ+9x3g0zzmrAIaBqQcet2ht3mepk97i38e4B8FhmNi3ZJX2bu3mM3F6SQZZLKVLtoEMNzX7udJojBp94G1soy8Wue3esmKWvntw6WIIdE5KQ7ZM2cs0d2v9FeoENYn9eEOAgAJVivm+o73Ng3e0/z6yNWEB+0OBrLLLe+waxuBTLxds05oNFAhV2LrR3ARhtvPmx3Ip9/t6Ho7N0QHRWOx5QXWc2de34XSIe5mIQ9yGiWz1JlDi4NX3cF+DrbgKxapmTt8Opn664YhR02AFBLBwhhTW9+RgEAAG4BAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABUAAAB0cmVlcy90MDBfMDMxX2F1eC5iaW5Vk39MU1cUx48ilMqYgqIgwjRG+WGWdJuKlPf6ft3XJ8ik+COgTIVIzbIxUoJicTPpXAaog1mMP0h0a9zYPxJsRIXIfbVaTPy1hcXMLeqiQ8KM2wzEYfBHyE5fb012km9u3v18c849594HAJCIAuldDcpc2onQF/ROvcKd9KniheBhdQqiqajwGhf2VeRqEHxF3Ica6ZP5iXqWEBTuFm8VYhBNQ8UwP8A9Gf7J0ezVJr3+tpt+2d4unA59bzMhiUeZWE6AARlAlFydn9GNpcsDQxNL871HNgszkOShZkA0jqCvT/pqoIGWP2qm4Z2/foH8fFytLKeRz9dBYMFibUnacTo02UBHRo7ZLK4DBUmIklFJ0XQP9hGAV/LSUx/R33t36ULm07ySqhq+ABHHvEaMx2pQ/lw1X99BFd5DvV1W60Lr3nwekY31bPT7YAjzlSgvzrykj9379J2VZuEtSy9vRjQdZX7dR40Mnruka/8h3b9ulCYVFvPjj0O2lUhmM0XCLUPwFvFce2pd1v3c6Ld5+DubgKvIckbmdxXnclu+V3ZO/3BM1It+fts674WYl4JkDirldT5RAvDLvm9D+kZnjw6OTEvvO43v4SbIzBsJip8O6dM6Uf+4jejRXQVFWK/huwPnHA2Ge+wr4vq4TdqF/l0tZ0lrk0ONZe8klr0F2G3SwF+rbrd1c8tr4nnVs5mEXAkkAdEbqIRoH+Xog3j5dKefa7S0BXzeCrJi4rA4F1Eqam70IN+M2+HgKvWHRZc4b/aYVSi7qjxKf6KoiOzMGwm/FO75ykUlMFx7P9Dy9QZxcqJKwCKwitU26nqaCYzmqmvHHFz29Ry+dc8OZcRxXElDNA+V9r/5NZG2bjlQvaSB2zCZKPZfqVMKkRQxrxGVcSqIyUR86OAHBwYLZmd5lbrCU9JqRMVsNsZc/E47pE6137T7rBm722nTT6nq+LYtJPwvvgmRf9I4X5ASSF1j33r+b1qZ2FHgHd2kzDQlqOmI5qPSo3WDLXg9g0r/6h66546kL3ZalDFnjvw+ojXMa8RvKTimKrWvq4jbe/lzWvprjFr34x9yCSIHq23UbZmCvpnyQPVRuuWTZ/zRWR+Q1ulmKQNRJiojmq847HNJua4O2rngX/7WmQqyPvmEUIpoLfNGwoPz80nV7ixan73d9ufQNvFG7UFxHZL1qP8AUEsHCNZbwJ9/AwAAiAQAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAEQAAAHRyZWVzL3QwMF8wMzIuYmluY2BgYGVgsHDczMDIwPLE0c/Bn4GJgXV77mFb2QMMDCwMDBKOAh/AjA8ONms27vq15fCuup6mPSBVt82c7aCSGo7y31bsyo3etPsD0Jz7TXYOPfYbdimv2rELZO77fxEOmiAd9zesBOpgYmAJ7plkZ+4ttVtp2e7dH8BO0HA80bN/V9hz8d0ghV4TFoEVst66nWEXepNnj4MW4x6QRhmNi3aq/V27nVt7QQpZPCettYsGMU6WT7bTZAA7ZgXMyRWOM2RErAOidoO15t0Os/PewGt9m6vZGmTHe73pMOcvcXz/U2CPgM2FHRD+Gkfn0v+WL1sPWIOc75RXDnQ+IwNr+UtLB7DzrZwF7X/4pe7W9D1mDeJntYjbH12Qt+vRswk2IMc8/rkLaDRQh9jvaofZNux7cst/W0P8ecTxjLK9DUvRLhsAUEsHCC+Q+1hEAQAAewEAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAFQAAAHRyZWVzL3QwMF8wMzJfYXV4LmJpbk2TC0xTZxTHjw/GakGGiOgKE1eNmUioOKTQ+75fe5lIwbcZikWdD5ypiyiLryi+Ipq4JgxFHUxQGbo4H7DA9l3EhOCDmOCDLerASjLUTBsdGjMlunPb28aT/HuT8/vfc77v3FMAgOEoEFMVmL9W6Zu8hoqPUphlN1IEU+X39kGIBqO05weaL3+SAq0DZFaVi96Ht3TP1PP8Nz0Ofgiioaghuh/gLwmefqZsbeinn79YTMMv7+NdSfu4cCQfosL1mgBtEoAgni9cSo+mmFtq280ZnopFfBSSdFQUBKMCfU1idlwBtdYUUy3ztAsyrPjM0Gv66/1YSSBxgmLYsp92ZBfQ+pLtXNWdNbZoRCNQ0cFy3r0EYECqmzqbZv1boC6J60/PKvyazURk073+eBmmwIL/7O7chfTn28vp2NrMzBHW0gwGEfvencHbi/Vy5Y17eim/rkTNtw/ibxWWswZEw1CG0H0lAt7tZGBnjFqy8BdafaiDg39mMDFIRqJign23vZBh2wE5rKeVnjpQpDIVhNPS2g+vewMxXwZwktduN016oNK2iyctWlbQPqneO9D3Cs7vD2ljWq0afTJZ9bZHZLrc8emxSEahYkP1BHztrHQ66qzaWXxMDWbxZZB1byAopvJEX2qyWt5n8fvKGndZcAhg13cg3L8vaQo8W+1Ytd7D9DVMoZt6ptmTtjwkYfo+hQXnVzhKgc5XdnLsBNNsbrHZ8hvI4GnNxIgoAmUM3uPLVgd0LnD8Oc/DGGuuMpfKz5FEckaMQzQaFRc8Xg11APjkFnMz87elqOXd6zqSnMNKmARF9/pjc5oD8iLtBfHnGM91M5s67ij/5KtqMQvRF3rvwPzKZfjOZ78nb1YPPjAwFq5RGDmniYxB8jFqTGguOTimX6Uia6NaNqH0t9W+dv7E+JXCdCTZujewfz04pjfy9Ppq29K6teySaxdIQptRmqFV0Gfjn4uryKF9u14DQ7tLT7PDuvtIZc4OIRIC/9vI4PmEbgJNTofpd1Bl50f0zafjZFP1TWJCFI8yhc7XhZ9op5Q/M0ot9paw95JjZFPEPNGJJFf3+mOZE/v+JG4aH0sPJ6Zx13w3SLGpUshDNFPvHZhLKe5BhHScf8VsqLJxj1f080cOd/EJSD5BJYT6HsK9skqXjPXq8Uk/sM876nlPmZubhWS27g2ES9T6XnziY3cPX8XdndjKn/l2BzsHyVzU/1BLBwigLcvrkwMAALAEAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABEAAAB0cmVlcy90MDBfMDMzLmJpbmNgYGBlYLBwXMbAyMDyxNHPwZ+BiYF1e+5hW9kDDAwsDAwSjgIfwIwPDheez9/1UGnDrkd/svaAVN02c7aDSmo4bhWYsau6dcHuD0Bz7jfZOcyYP2/XLqNlu0Dmvv8X4SBjANTxndfZ7vy+M7s/ANlragvsThtdtuwuUdwNMs1rwiKgaUDGrdsZdkbtf3c71L8AKWSR0bhox5dRuXvtnjqQQhbPSWvtooHGss4rd3LQBGllYAgBa2VhSJCwY1+hbF38pdQK6BDWjuNyDncyqvacOrByFwPYoStg3qlwnNnGZ83xwmwPWCNDhJ0B13+r/Kgca5CLxU+kAI0GK9wC1AE06oGupUO+lPnuT9bRu0A6li2+bdcX4Ldnyh3J3QzgQKxwBDvfPWKfHefEZVYLZqbaQKza47jGRHJ3Tf5+awBQSwcIxPb/Oj8BAABuAQAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAAVAAAAdHJlZXMvdDAwXzAzM19hdXguYmluPZN7TFNXHMd/DiqWDlscrmDBR3TGoW7TpEDpbXvP6bn38uhWFMimIhlqjIsscw+Df5BRQHTuDyfER1BkZENizOJ8ZTTm3MIcU/AR35qAcUWbbMuemTPbkhL34/aUX/LNyb2fb76/+zvnXACADBSQlRq8uU0r2F7NYdVcaTTukBuCB5RpiJ5DTa7TJ33r8jUYjDP7kjK+4XCM2273+f7emu9LQZSKShF+gAcUfntZ660e4/G9pTxd3eVLidZ705DMQKWJTIAhCiCT870BnvFwVuSVhXmu9oPrfVYkhSgrJOsg+sJkaFzjnUtr+OSbX+6Cy4Vrscg08no6Gcx/SbONN/LUzBL+2b81Xkt3wJ2JaBYqMxkX3cMA4vRxlpeP9pXo0QVPCgN19R43Ikl4jXpq0uCt/5SPNZVvGQjyGz3FxZS0uDyIvGJmY97oI8wL+iujV/iuc7W6OzvmtdZt85gRpaPMU3PUUwiNsdbfm/Si3d9ya2nAk/9ut7cISZZQonZQGLzNBp61uk/eHDHmveVv8/pwlUVmYv+GcV/u0arHHfrxklz9kC3myu2fKJiN5EXU7Kk8mQCcok0fdeufBNv1ifefrDCOHUWFN1EcHyuIedyh/+qcp89Zd93w+VFMzJpm3AOnBn9uVft+bpGO/jGPH/uwQHm66UdmEvfEJO4CHO9QYPpCzbN3tOj0nnapLSONOY9kKRZEz6MsyTnkCQanFiv/XDoiPfzqHW5edIGMnABmR5SNsic/L9TFIESYueOqNBzOkUL3H/maZpwlCiJVeBM1TPAeKJ8250bir1Vxx906OVr5zK8hKRG9jb6Nd1SYv1HtNDdIQ/y8VLjTpvwUaaY5iOagcpJxD0Yw/gTzLTkjWb6I6W/H05Ub01ppKaIy4TWq0anCvgKldvPnUlv4Bc/KBV2+XnMjLUcUEHtj7Eu8VgU5yKrXSPzkoV7pm+/HWP/GMJ38F2dC4p80vm+oBvvO9Dvsr/KxD7i+2TbKvrxYThyIclGOZN+emwz2UdUyHuMNJjM3XbP7+1IvsdcRvSG8iYrg+Up0zV8QCVcO8q5sEzlwtUUOIqkQvRP3ajke+SJ2tPZrz+n0Inc7XUbLvpNpHpK5qLypvP2Yd5GWOyuk1JDVG7/QQaJkkKxCslp4E/UD5q32328e4GvL3/Nssh8j/ZfvkEokVaj/AVBLBwgIN6fQfAMAAIgEAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABEAAAB0cmVlcy90MDBfMDM0LmJpbmNgYGBlYLBw3MzAyMDyxNHPwZ+BiYF1e+5hW9kDDAwsDAwSjgIfwIwPDtav+nedbp23y6g2eA9I1W0zZzuopIbjtdsdu5QqJuz+ADTnfpOdw9VDfbv4pkzdBTL3/b8IB02QjvsbVgJ1MDGwBPdMsgs2/7Jr4/kFuz+AnaDhOEOqZ9cmpY+7QAq9JiwCK2S9dTvD7oHOk93B9hd3gzTKaFy0cyhP2J3hnLobqJDFc9Jau2igHazzyp0gdjAwhEDsYNCwtvvEedFKrWWfNcSVHo46cWI7P0bq7GYA81fA/Fbh+NyVwXrhXJU9II2rV1nZHea5avVtuZ01yPl9YVEOsgeAEkbPFOwFgB5k/chn4rDYKGN35422XfP3LLcBSRY+ZLcHO/kg81a7a2/Td7dxpVhpmDLbAgBQSwcICGWmwTYBAABjAQAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAAVAAAAdHJlZXMvdDAwXzAzNF9hdXguYmluTZN5SFRRFMZPueU6jmu2ToTZro3rjG/evOW+eTaVZlSWk2IIRbRS/VFgoLbQRhs22QZTikoiamha3SctI5WmCJVRCEkL9U9RpEZl1JmZN0MXPgbO75vvvHvuvQAAESjg9TIU7JJbp3E0uiyCUTaEc/ujzksTEE1EuX4DXT7bfBnujZO3X9NpYlcf/XH5qrlJl2D2Q+SP8lP9AEMCfJ4nN23qpnGb0+nDgQpzuHUZG4RkEipIzQRwCgAc/3pRFjUv9u96/iDecMZeZNYgSUVpwLvs6Ovke96nUlOShdo6xJRPL8CQgSRTzXTnOS4S0CXKtguldKUmjRZmseyP1iXZWkRRKK03bvgYARgXnkYtoAvsaUrBzO+ZORu3mbIQGVSve40GyLDup3Rij55qfxqp3mE0BgmVBiOi7P/2DMNvMS9PnHygg5KdOYrz8yAb1y6YghGFoIJ9+xUIDFcQw5sRWl97jI5132Bv/05kopHEoKK9fctHRCg/LVZdr6ZX/ZYqMz7NY11lBmVSvZ5VIALkEnZWMm1ut9PSmuZkV9VlNqu9PX0f4/wGhb/6Q0pvfZgy2t5pCOb6MmKRxKFifXkcD9AihF05pVQ9qlR8VdcVUb2eRTFvJX/UGqbMsmp8PiyCqN6BIPd9SZfh61bL0dqtDPdNQ0t1GdJm6SMJUO9TgHd+DeckCJwtH7/pzPr4u5JpHwskDfkxUiiiMFSodx/cHwItc6RfqSeZ/txVtG/sPv+hFkg8osmoeN8Hj+F5lAiZdZVMSuIOU+DqVl7r/GPGIkiq1zPnNjyPanJr9O6d7bte0qHkk6Kmd4toQSSrvd19y55bQFdqKVxTzORFNjBr2UjJWl4hJCCagkrw5g09wb/eICUFDiaku08pGQ+RBiYcFHIQLVW9nvHFW+CxXfqVdJgZyf/CvHtyyLziTplgRbRMnY37HTk4C3CLpNXNAh3cU5NdXNhFbq6vEcPB827Dvd+3F32Qwj97LdFHjfls/ahCjLa53FREaaipvnOzEXDqLXUztUrjqbk0dMtZ4Vp/G1mOZIWa6XlHC3FMOr4npix798Ralmu5Jm58FcNNR5SOmu7LqxbBkSDVjUQqVUcimCLpNH9pX7WYiyQP9Q9QSwcI5w3hik0DAABgBAAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAARAAAAdHJlZXMvdDAwXzAzNS5iaW5jYGBgZWCwcFzGwMjA8sTRz8GfgYmBdXvuYVvZAwwMLAwMEo4CH8CMDw5MbY275q7u2yUcbrcHpOq2mbOdwAegvpuMzg4Fp1t2XTRZtBvEv99k56BW07Dr5ry2XSBz3/+LcJAxAOr4zutsF6G1afcHIHtNbYHdm4f8Vv4lTLtBpnlNWAQ0Dci4dTvDblr02d0zgvaAFLLIaFy0e8vitds5zA+kkMVz0lq7aKCxrPPKnRw0QVoZGELAWlkYEiTsdl3jsF7Uo20FdAhrx3E5h5jqhD35d9p3MYB9sQLmnQpHkyfPrMrVRfaANTIU2LFOvGKVnhNmDXLxWu9KoNFAE5KvGjuA/bjDzNDhyir+3f/Nz0Ncdf6+HXv11J3nCp7sArlh844tkMCoT6h3uOy9bZfO5rPWIIWreXbZlYnK27zTnmEDAFBLBwjaMFQzQwEAAG4BAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABUAAAB0cmVlcy90MDBfMDM1X2F1eC5iaW49k39MU1cUxw9C+VmmKOAqYtBaf22ANUpo+370vd73nmgVdTpdDBNFA465aUyMP0hshWjUDcxU/IGmKNFsbn+AqJFwnyI6B1nmj4i6VXSTBdjIdP4hMZoqnra3nOSbl9zP9517z7nnAgAko0CapcHyjZqv72O6jQMufveQ+G3PISUK0QhU8Bsb9K2coUFbgFivmunEj1qoyVIrnhwXI0YjikFFMz9AtwzPpmt5PzTRbJeZnimrEK+mzRTikMSj4lhOgBsygFN60m6hv//3TL9QOsZWU1skjkSSjxoJkahF32Wpsn8irfp0Fs06djL35X2w2ZE4WM5QvvpjBLIsmuG+m3YkT6J/FlqE670ZjhREo1EpkXTFBwjAIdn9zkIN7fP0oa4mTr49gucQ8cwbikGDBiteKzPrsmiNOo2O8dntjWSXTUAksppD9f7Vg/kKXZ3mM3Ty2tn6dccVofJSJp+AKBGVMFzHlzJ4HpHnFz7Xk1vqaGKBm980xSPYkKQyhWOrDG33SKm/2VGS0kCDK7d+WyE4g1fFcob714F9eSCvG9ygG3LeUr/vsG3S9rN5aUjSUWnD+Zz4W6MsfObRxdJyPbKKP4OLecNBcWmRNHV3gA4Mgr4nd491X/O+XCwOFFZrXGgO5mjwolxNT13KLf4mij7unqO8tPYTA5sTA5sF+P47BWLNmiu+Kf+rn8u5d3/HkuT0VCUJkRGVFKnD+ZZA4xSluqiC61d5mnb3mjTgAzIW0YeosZHjeU4Q8EhkvfFH7tevHzi8D3tEt/+8pCLSmDccHRLOgWJaYLyy/950eu3FamdGwZBrLpICtndo34ouFbJK1KOmudw/0hGOGkYpJ9xe2YRoHMoUSdfdiVucI6cWHuCWWVv04kCicieqUp6HaD7zhmI2UaH4FWnwV3Ft0bF8uq/QWd++WXYjWsB6E+oL/QLzHZfL8hPoqYFzfGKgj+S8qhKDb/EDCL/J0Pk8KwnEFKnb+95QMae31ew9KFsvPiYZiMajMoavNxuvyObae7iZQqVXX+XbIjdU89JCRIXMGz7fBBWcO5TOP+yt3pvVdNOan0hr4IZrEaLFbO/wXBlxDqbJWwrquA07jcK6pBni85JuPhPJBFTmcJ/rca42Sr88KaGBGg/f+z+It08/5Zcg+YR5w3EZfUelLv9N/t88QVjuybaXWW5xS5EsQ70HUEsHCIywPiWCAwAAiAQAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAEQAAAHRyZWVzL3QwMF8wMzYuYmluY2BgYGVgsHCcycDIwGLnG+zgB2LkR/o5aDIwgaQO2Ap8YGBgYWCQcDTflLcr1k97zwegxO1tjnbLqybvaovO3GUA5E9SybRbxbVrN0hOb9Ziu2tXF++KfbdvF9AQlu25h+3AponJF9lBTdNw3KsfbpV3aQdIB0tvykq77J6Ju60vmu6GyUcweuzi2mK5G2SC56S1dtFAh7HOK3eCOSwEaBRQikHD2m7y3OVWDEErrSFaPRyFO15ts+cV2c0A5q9whNpZ4Zh+9rzVjjBWkA9YVq+ysvtWs8rqSpuMNcjP4idSgEaDFW5xBBtt16tg/18icFfnmRk2IH+dWb3b7vLC7j0skw6CjAa6IQJmtIfjpz/nbc7/Ngcr9HuxxW5VQPruC75q1gBQSwcIlfz3riUBAABhAQAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAAVAAAAdHJlZXMvdDAwXzAzNl9hdXguYmluTZJpTFNZFMcPLiCItlihIi4Qwrh8sCIWsb196319KCqgKCqouMQ1cdQPflBnAkqIKyoRosGoGePCkhlN3HufwYhRXKJxDYoGwWrVECdxZGZwPW1viSf55yX393/3f889FwAgGgXyOB3y1+gFBxMYefDaeef8e/GVZ58WhqgHyv8N9/scNh0aZPpyQxwzZbWxu+ePip+LqoWeiHqhenJBwWgdWqupe4GFeSpL2O3vu8UR3uuuCER9UBF8T4AWBTpG6XHew6zmwwBm2r1erJfiBRMSM8oEoWpUACR5kS2WfUp6bGxpNU0sr5onZiCZyL2BOnKAQmKKnjsng6U1x7B/Z5mFj84opwORk2cHqxD3q6R5u5YbCfYlbE1h2jjL7+UOO5IBXMG6oAJMo1NvTWH/1Kxm/pXshx/HEvy6fuoZGvpQgCWqQmOMa7PNbFEWEToc9c5IRFGoyO5+DypQ/E5N72y7NEwcadxfOtc1YeNzYkEyEGXpzi0N9Pv4t3ASGbHMeB2f5o8EASVyb6CKPXg+ppR9sBvbtXZWkNzkND53pUr+kfLsYOWjL0f+M6zLE53kY6HVdNQEPuOIwNzsOvy9yt3yQiCG7a3nzjG7Vp78hvbm8+8d6vdkhQbhyTrJOZxRn5pHbj0Ip7Vei9aXv6e+oX6lrxRO/aL9n7iYrJszmj2qvSLHVQONRRSHig0dROrE+ytS/ivNJcXHZ7g6U07LMY1fRbwEULk32O8ZCq37aXRlxYU95ousI2WnuvnmChV/Bo1nB3I3PXRD4mK3yTqe1CVtJe1PTFre8BLFimgQyhrar6XJDVBLF7aWkKX1x42iL1HavbAtCi6Czr2BYlY33KjS0obMJNtOXiXtTaVi895NSiaiSfxuAvfyZb4bpGxaRaPZkw17yR9Hn1Gv75zSD1F/VL/Q+RoLMaK/Wjwe2Ik9J4yzn5rpymOT5XhEg1Hxodz9ft9Y+chfPVjdd0EYtK+Z+g6NlCYjyuLeYPlw3G2Kvn3M5bLOtcb6MlUSbLHyFCRTeXbw/d2ToSGTrjbLglGYSfJ9TNqxrUZJQDIEldC9X5Hsf3/WbyXC1S6v69dn6VJdrUOahiSbe4M1RgVpKF1VYTboy7vkqWe6bEstV3KQ5KJ+AFBLBwgIl1pxVQMAAGAEAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABEAAAB0cmVlcy90MDBfMDM3LmJpbmNgZGCRk/R32MTAxMCq6rnJ1o+BgYGVgUHCUcaAgYGFgeGDw1nXwF0fGEFsDYfrxxN3Vewr2MXAyMB6armug8AHsKIIxy0JUda7mhaDFLJ+1TJw8H/hsGvr3QdWYGMvBtlpQox1cITq0HBcuN5pV0PTlN0fmBhYSi662hnXmVj9ex1hzQCWrwAqBNoZvN7O4eKq5F1zmtl2ARWyli5vtTv5e9eeSxMO7gIazeI5aa1dNMRoD0dNkEhoaKudAEjpqix2u3uqUtY/JGytQEbFHI1y6Nz5YdeLF0a7ITpAdjCBLGuwC18432rC1hjrD2CJKY4xd/X26O/fZwX0J8uZ6RUOIKNZI7ZvsgO5inXr9WSH+xOX7mEUnQx2/tLS+3ZB/iyW/N3nQK5iLXy4BayQ5XpMvYPj7OxdCpuOWIPcFKu/y24CC7dN8NQ0GwBQSwcIxg3rb0sBAAB6AQAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAAVAAAAdHJlZXMvdDAwXzAzN19hdXguYmluVZMPTJRlHMd/nHHHBcjhwYF4V6crICcN3II77n3v/fe872uEoIT80TlNXJi564gZkTKJM5FsCyYmNVOWo1wLREYi3nt4uFhlRtBGa8wcV5lzy/kvjP65ftw9x+q3ffduz+e73/d5fs/zAgAsRsHyOhUa8tRRmPR3/JPIjBfPEUdWjhyDSIea/+rnff1WGSpq1fxBH3Ml87b/2/o2Pvfd38kiRA+hFlE/wGcitFtkjui12UuHmLKZJGfTgVbegCQOZYBovSMCnBO6v9JpN48ka94cV+6tKXCySExUkeIFgFzhF2uiFt9g0QZsHof9zAGHGwlHe8aEfT+K0Jwk23+eZMYqDzIF9g1cf341n4xkCSp5oZ+GuV2Cd28cu6OmWPv8Rat74uDjHI9EoF6ai/0S5JoVd/wdb77FBOvbuSVPJuEigPSfM0N7kwxNler64eOFJzfrtMMZGWLeyF1iRPQwyhjdHz9NwGuSH1zP0gZPL2dM62zcKqNFNCNKQZkXci8RnKTUtume337SGUjVfe2cmA25cRFk6qUlQ7NPCr4fcu07bGA3tsSIb1hO8AoClWaHc0vKVJjpIXvj/vR/d6ZX68u8S9aG3uZTEVlQqdFu180qHGtULhYt1loeO+X/vlVPCq72kTWInqbeSNlFmOkm2vkXRgyzdZrplfe4ly9c5IqQPEPfQPiO9yVhrkEpSilk3Po8/1PKFbJ/aA+Jpe8pNjq/Vz+WYetvyqDvvLPJV814G/Wk73YXiUeUgIqPnmOiSgZ+jgz85GJK0o5prapHanEckdIQpaPSFq5tGwHeLlecDjL5W351rcgYdh1K90jFiNZSb6S+wZH2SKNnG7XsndbAEP+SNLVql1iCpJRmh3OZegX271YKfF3M2Qkdsz3USuaOGqSliDJQS6Pttq9UoL9D7m1TmdfuGNmt2YKUkr6FrEO0nnrDFSwn4NihDHROB/7yeJjqugfCp9eGxDJEz9LZhOfSqcer/FA8MfWc//lgF9ucvYeM3v+BS4TIf5sY3R90irArVrl5byAgr1zt1wulwtSXDWQZEitq2cJ5u/F5V4mV90tG+OmCwN+1Y9ya8VyhHMkG6g2X97IM3X+QzJqewhuW17XVF0qJefhRqQJRJc2O5CaI8/8I+eQUc3zbDfby0Sxu8olazobkEZTtf7lewSiYtY+u7mav3QJu/IMQW4WkmnojdQ59XwiDY71suc3klptzCmt2buY2ItmE+hdQSwcIt5oFaKEDAACwBAAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAARAAAAdHJlZXMvdDAwXzAzOC5iaW5jYGRgkZP0d9jEwMTAquq5ydaPgYGBlYFBwlHGgIGBhYHhg0N2hM2uD4wgtobDbWPvXTmrI3YBVQP5S2wFgBKsHLd0HKaqqloLt2y2Ain8GujhkM/10krqg5A12NiLQXaaEGMdHAU+gI3VcFxtrr9r2YrW3R+ARpVcdLVLK1SyOm3lbM0Alq9wBBnNErzezqHjmc8uHoVPO4EKWUuXt9oxea7Y02W6DuwGz0lr7aIhRns4aoJEQkNb7cBaY45GOezvTrZSvehuDeO/WXZj1wUWxd0ghatXLbIDOYYVZNmkOQesvmfbWkEc1+LI9WuutfY+KSsGoMYz0yscQEazRmzfBDaadev1ZAdP5ql7tsS3gJ2/tPS+nbrGO4u+xztBrmItfLgF4obrMfUOq7hDdu1k22gNcn6s/i67XOtf1ult/jYAUEsHCFsAuHdCAQAAegEAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAFQAAAHRyZWVzL3QwMF8wMzhfYXV4LmJpblWTfUxTVxjG34q061octQKtwIQFgmRbBBInbU97v85tO/BjK4wPmYnZZLiptWoiEGSQzdo5zeYiiGFkFhN0Wxaj2bLV3Isw0cVsszCyD5yJAf/YB2MhIxrUZR9v29Nme5Mn94/fk/c55z3vBQBYhoLCPR5oLfd4V6qKtfcfx+Gye3R69glZg2gJKvbVxnzn82Soa/EUm3aR+49NKWs/eIO/GFykaYiWotKYH+CKCMeyZcO5P5TOcAepHTLadlhDvA7JQygdJOuECBARgv7flHltmhqZ7F9zfD/YCJJMpkTxAkCZMAl/K0U7dGok31+ZfeFQpROJi/XUxG1TFEZLqZD3MnnwUi/Zd30Df+14F2dCtBxlSvULi8BH6QN/lFiatxJbeQ0XabLwXKwF8ybKSgEOicEz75CCjz4jIVdXzAJ4GBD/c2c41ilDZ70ndOMt+5vvzyoHjljFwgsLVI/oYZQ+db4fKQQy5ZP5Oar/oIn0/bKCS5vNEs2IVqDMqdwvMXeJ1Jt+U5lYXjL8oua6bfzujEtCQpmXlQzdr0ujGV85XtXfIZtf04jB7FO8jMDNsuO5G30emB6ig7oZRagZUL8pXqBNhUE+C1E2KivZ7WezBwba3VmZoOpq+5SpkJauu3WOehB5mTdRBSJMh6nU5Ls0d7lRNe3v5/aNXOaeRlLFdiD+xl2PYK7OfaKthLT7Vilnb9+kpe910HS2T+nJ+bV9KMPWO+7ArbM245hEvt2upUX9J6kBkRFlSN5jokEG/h4ds5aS+o6j6rTLLzkqe6UcRBZUTup5S2QYpfTxp75zDOlHyEA5L80fXCdWI1rPvIkax3EOSQdONan6CvNwhN8tLazZKW6IjYxlx3PLfsVxfky1VRWk8i+Dc9y+hxpXd0lWRCtjW5Js593mBovf/elYgNz9Ys5xu7qONpz+XtyE6BnmjRe/m0L379LRNtkZ2fW5Y+btbdL5tRPCs4h8bDbxufRoMfeM6OOrlcX2w85aSwfNvPoDlwGJ/zYjeT7oEWFnultZNji8vrFA4VdvFAJXWmkukjxUbuq+YVzdBjGX2i8NthYP/9lylfNGy4QaJLXMG6/A1zKE71PLjR773ue3qxUjm6j54irpOUR1LDuRa8TfgBelaB9ZNEw6975bzM3VN3P5SB5F5f8vNyBUhZaqLd4tzp/mgYuennHWI2lg3kRF0HdNKGoecMInGteR7iftL7yyhWtEshn1L1BLBwg5CwevnAMAALAEAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABEAAAB0cmVlcy90MDBfMDM5LmJpbmNgYGBlYLBwXMbAyMBi5xvs4Adi5Ef6OWiCGGc47B0EPjAysJZ59difZei2erlaZdcHJgbW7bm3ba8bsu8p2uyxywDIn6SSaee0dM1ukJzerMV283K9d+msW7CLgYmBZXvuYTtNIINVTL7ITuADAwMLA4OG44JMUauDGzeBdLD0pqy0E2jK2f3ORHX3Aai8AEgiLe2ZnaSX1a54ztM7nzcJ74YYt9cuGuS4/u0FDmBzczTC7UDKWat4P9m2zt1g5eeUZgWxp8Vx+XJBqwbuB2CXwBSy7H1mYfdXstLKLWw3SCEwCCocD7kI2ISn/7ACGV0yOQZsNEs1p6A9OAAyNhk7zH3itvtCbuYuIJ/F56evw7U3m6yVNf7sZoCaAFLIcjgoxcHA29n6SL2TDYi//UC5w32W5l3lbLY2AFBLBwg7wa1yOwEAAG4BAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABUAAAB0cmVlcy90MDBfMDM5X2F1eC5iaW5Nk3tMFFcUxo9SYAEBFVwoSDBpFLqCz6TtMnd2Zu68FlkeapUY39Empf+Itf1LSDdKpT7S1PiKWoSSprUltqahSntnAVvUtQRokwZtpAnxuTakiUAMPrr2zM5d45d8ucn9ndzv3HNnAADS0aAsM6G23vQcuMvW+r4Vrn7dLx1556g+DdF0tL0m2XVli03oVbTDdSPs+ochK3vvCelQoNqXgOgVdAI3rPeYMHpa8w8MM29NjfX9RJP0++XfxGRELnQyPxOaU01oi+oPvxtgxY1RtuibKd+eoRQpE9FMtL06mqdAY6o57VIpuT08wFp33STlDQ98byHx8lpHsgJyVK+Mng1Vjz5hnWk9vuNXw2IZEoFnO9pAAY5phwdrQ6tyl1mT3q6l6/68L7yBZDa3oy4VoEpLKo+yC3/5LXtnU8OzMoKr+NKdodelAWxXq94etyZ2P2GBysdih7BWSEGUik6J3xc+pxD8R/3o1zoWvpUaWv9cFlt61pAsJNnorBe5TdS+S0rfz8LSTZtDgR3FdiT40BKvjSnIsD+LrvgjK+TZM2h99bhZiE3BflKe7eTWYl2N0uT6m32xrcu6ea3OHhvMQb/JV0cS1vUqrSMRdrG/kdk7T7fsK8FmQOXfgv128K5kgqUaOfuSyYGMUVa/oEo/CD9qifw7SYzP5UyaCcXVRuLWYeF2ZDUpaqjQO/4rpmmIZqDT4v3l7jbg/Elj/MxiAkWVwtGJn+j2L3XdjSgH7Y63t2RIh2CWcb9vA9n5IJPc6b4k93Wcozh80HltTGX78bwE/bNZF4QlyYesoFvS6waHqIHI5Nmx3Mh83Jqvww+vk39vdJPW5o9l7y03zUX0qt1W/LyAy4DRMc13Pp9cX/geSWTPpQ8iLtmPqJzXOlqgQluePr6mUzwunybmxkH5mjCprEBSwWcTm4vfY0Bbv+b5pMD6ZZtMus1W7e68UtX+FzPA+Sdj/ZUUYX+m2jOzxCp8lC9q1imNnsikeYjy0XnxWNnUoCvPuNwyZbXfmWXl9L1P/flHtACiSl7raBE+Y1iZcXaz6D7ZEkoPAr1H1slVSKp5diy3N0MDuUlrX+4VI6VD7NNwknqufg6di6gAPffFeWN43hX6rGCSdBZOiIUbR+jT9h6lBslKXhvTliA+0ZSSc+U1K9s/Jpbq6bTiXlhahWg1+n9QSwcInO+hsngDAACIBAAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAARAAAAdHJlZXMvdDAwXzA0MC5iaW5jYGRgkZP0d9jMwMTAquq5ydafgYGBlYFBwlH2AFAq21nfQeADAwMLA8MHh/BuqV2/Cqx2/WkV3gVUDhRbYivwgZGBleOWjkO6P4+1utgEKyCf5Wugh4ON8AGrWZe/WTGANVc4ajIAJQrVnGDGeTiKnRHYJbJ69a4PQKMS3ovY832N2hn2RtQG5JKwui47AaAE68M3WXavilj3xjJk7/kAdlmL49HbQrt7zb12gtzgOWmtXTTEyR5AO4AioaGtdiBXscQcjXL4kG5hxWljYA3ji1js2xV3h2U3xPkdYDtYGB7U2L2QybSqMl+8+wPUuZPDjK1ncbHsBLm6w7zSAWQ0a8T2TVCj3xQ6XDzcsPvtvqVQV0U4Xp1atMt45QzLA0ATN3ntghg9kWurXfOhg1Zr/9+yztwcYAMAUEsHCDzT3Jo5AQAAbwEAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAFQAAAHRyZWVzL3QwMF8wNDBfYXV4LmJpbk2Tf0yUdRzHP0l3BxwXO0Q5Oa68qZFNNIvR4X3vnuee5/M8FwKhYngrZ6Q2aBFgK8hoghPFP9r8EVygc53WYZgrqBR2z3FBiLK0UMlNhxH2R2WbrA0yNiz63N1ztz7be88fr/c+n+fz4wsA8AgJrLvcUL/WPa07rnj91+0ndLNoGFwlPURoASn81YZ93VkSlFW44Ruenbzbo5z9rYWfqfwbEwg9TEpQ/QAXBDi8WHrq4wuK3VvEpo6/lO+eOMDriCSSdGpOgKMCwIirZ2xEebeiT5mfumjr2v2rLZWInZQKsagiX7krZ/Wgkm+4q1h+6cu752y3OYg41ZyRfPxNhIGVmAaMTdysYx1vFfPefY2ckVAayRjP5xOA/wH5HV+wbnMu83aWcsUJJp4Lp1C90ViCAAcEvamW8XiMtTgbOQgE17iICP/rGazb3eDrxNn0LiX7xfeDHYP3cf8rJ/kkQsmkpNj/fbDGDbb18p3bI0rhjT8C2hs7MXFjMy4klE5aGCu73+qGyXLJPP+1cqutLLj5u3Hx9Uv3RJEQqt5ItBbIAMuFJ24lKlUViuP2qX041XuKlwjJau3onFGAJh8OP7CF5uqeDspfJfPpmm+5RUQWkxbF+11KrWUJn4x2htZNpoUOfT/Obe91ON1EnlO9kWhKQWjKxfNHe4M1ww8C/9YecXx4/zRXQGi9egPhHUNjKvWhk88sS2Kv+X4P5PWN4+5XG1Cj3pMmNr93zkhQPiMXFJ3r/cdiZddKtDixtx31hFJI+lgfVz0S8LOYrehZtf7tYP6T1eLWtW1iBiETKSO+3mwJBhD3/PmRfa7nM6ZZzouD9c8KhYSKVG80RmmcfnFo1hY0+RL7/8qtEX/KqRKKiTyv1o7UzRuQ4dOr0o+PT9ubKzuYxdsgOqZ34RJCmeEriaXbqcjAZ6LxSyPzaIr6dzzmEUsPa4QSQhtUbyS6j0gwOYe2VZMMDf5Ai+5lfC+1TdhIaJM6m8hczmppjceE1vIMZUVSteP6ow24BUs5A0TfrSG+31YBmjXyJv+hfu3QncAbnmJX3Vg9molkkczxfmsj72h4Zml/1+qS0LXMbJd8WsOXEtmseqO2Qgk2+CX/iYzg3jGnfagmJO45aMIXCJWptaN1Kylfu8tsMjqstQuc2y7ncJnnRpmFCCNZ4nVTyNfnWvHMm+zKzwcdn88v45KbctZtIeIh/QdQSwcI5DezLosDAACIBAAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAARAAAAdHJlZXMvdDAwXzA0MS5iaW5jYGRgMZaJddjPwMTAOknF2C6agYGBlYHBwlETyGBhYJBwFPgAlPKclGJrPoV316nejztBfFXPQ7bx88T2OLzOs4IobAErZPm6TNxu5aVuqyz1D5YfwEYtcUw8o2tzKInFGqKwAmZ0BFAH0PqDbOEOq5b92ylru3MXiC9yMsBhYczxHWyBvNYgV/260mgn8AGsY44j61u2vY8Ox1tD+FccH4R07fpYt3wPAyMDq6JtrIMzUAeLklKRnewBIGPmTFM7sPONlc/bnl0Ra3U2NMtK6NEaK5CkIOM9iOQs88l28058teZOS7YpOK+7+wDY7D9AZwINbT4U6wBWlZaWZqfp5bDnoJ7lbojH5jge87tj+T1gutXKSsW9AFBLBwiaWz1vGQEAAEoBAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABUAAAB0cmVlcy90MDBfMDQxX2F1eC5iaW5Nk2lIFGEYx1/zXlNzbW03O8wuC1G71G3fcWbenUM71SVXMEry6rJUTExJFiPLsOxDeHStFYaR6Qoq2IxLRaFFhUUftKIiCjs+VNiJXc+s49IDf4aX33/+z/u87wxCCAWD0OXzIqpzCmnLl0m5m8Lwh9tl/KlykfMANAWkPH0V3+54wfb0qNiYMmaqMNRLOVwtKc8r4T0BeYE8VaGIJg5tny9kHboqpb0JwYOaQvrGzxqiZPipWUomQic5eJM0zm2WfmW8kvcU3TPmn9lOK3uaNrk3V90i6Pphjv/pkOw/GqR3GVZjUayPMRGIUfVOFMMi1MZ+4+V+P4sOB3in03JhFF4NxKT2dvVlIgXoTeqbAvHsNBNVU1pDZn+LTAoBpAWFTMYdGebRJytvGYjBF/QNptAyPRtUmk8wIEr1TpQD+qaS/fQIVVLZio/flbA02oOTgND/nY3t70ER2bL42uBcaYe9Uy7UFfGJ3cHEH5gG5D+5P5Inoi8aYVNlu9T1zBc7Y2fyX89e4UIBTQeFTrZdlSWioQh+aZRdyqsrkJft+s6F9o6ZGUCs6nXV0EUexeXyj1bsv5bc6sAW0cINdHhyBJBZ7T1xH36wtPCO5GPOcC5B/kIvZrPLq1kdkDCQzj3vW3i1hRXa2px7ngRQB+7/ZjxvHkmCy0S86nVVajos41j9+2i5Y0ua84FQxlp1HjQcPhLVb8tb8V2P5FBZnzBmWkPd5r3wSZxCWu2rOYX5qB7Fi2w9sL8TZr02Fo+OD1IFj6voi1aGBACaCgpwz7EefHPMY8XBuHFmJva5tC+hKLuKngEkHjTDPccZmOMPsdVqcMs+LUYR2THi1uz4ZCApauZEXjXkvWTTK15Ta80j8uXuJaTuSitjAJIAMrjznkOezpxztpkamBuU1PviIdO+N4isAbJWncX1f2zpE5RvdclpX6wdvuPkjhq5eG8DE6hcKSjQ3bfTjC70Ch8WhfV/btHicetOxqskkQsHMgsU7u7rRZDtnLl786f+4opR+eP4AiaiM5Nep5yE6nWV3kNA0bsF3FVrWrmQwtsqDVzzvO9kA6CNoH9QSwcIxW+VMycDAAAQBAAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAARAAAAdHJlZXMvdDAwXzA0Mi5iaW5jYGBgZWCwcFzGwMjAYucb7OAHYnzZ5eAgY8DIwOrd2Ws/J3qy1Qcg+2jAVvtrm4V3L4n7spOBiYF1e66zncAHsH4NR/ani6yU7q3fDVTIctnJz6GgVXrXLtPwXUCFLNtzD9tpgnSIyReBdbCAdISJ/bU8oNu8+wNQRW/KSrtda513XzX5sesAVF4AJJGW9swubjXTroyGyJ0nom5AJf84RoPMPep3Dmgu0GWfGa0dQMpZjY2D7a4IRlupLTuzC2JPhaP1pEQrE675liAdXTKC9lAnezhWp3nsFClZtwvkZNZnvg6qygus2RIe757HKbwXAFBLBwiHw11C8gAAABcBAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABUAAAB0cmVlcy90MDBfMDQyX2F1eC5iaW5Nkm9IE3EYx5+pm9o0/1xmkpDDQlLnn2VOd7ebt7vblb4ww1TKwsCierXANxnREvuHYQuVZoUJYi8qS0SyupssUSoY7UUWGRToC6mZYeUfVIye226jBz784Pf58nueu98PACAeAcYgQK1dmPz+WJymHaTz5rBlXdfJq1BFIPKqkXOmfAE8DLfrTL/ol25LGpfTciU1mY5EFYVEKnloJgSAr/z51y5xwPlN/PJnmU7sS7dEo4pB5DVYGQzYCaHVUEJN+l1i5Wc/5VybpXPQbFYIVhkDjYTg7X0uZYku0flWb54u99F6NHnKmapALo6F3im+bcnk1uX6xOu1E7SWOE0loElEEsLnXWMAlq37eyqoRx+OuJ2/VOa6wQ46H02Bkg1UwzAP0MV5T46JXZc00sqP36ahjnmyEJXhv28GTwwH0Mi2jI9Lxe+fiJepAXO5ftUUi2oTEhue754VHH62dCFavPVwRhrNWaHOuvVUEppkJCk8X6tV/uYlfQ9ZsJrp7m7fQcFEU8EeNEVKNlAOkQWQrLu7FyW17q6UNfXRJG/vRYqV3sG+tZg7wMwNukR3yVWp7pi5dPpOfD6BJhchwn0tmPMwxTV9IoMzhnaNSIlyt4G7K7cL8nnGsRZS4x0Z1ak6eU9hWpkaVTaiDv2XiUoBtkTYZowesm8xQoq/YOfrpaOcVr4pRBuar6GQh6ec8OzBkqie/UTW/L3PDjXV8ymotiIp4Wdg56DXz+2ci6EGfRclw7lDzLvMbrZUfppKNlC5GzYw3LCdWI+jXnltpDq7iofKIpZERSm9A30XNvB+BbbaR0htVVpzxnA1d5xIsKai2oakhs5LtPBwqoff7lh7mZZ0WDKqX7AH2QXWjIpWssHKw//3hvmZs88cld7ubq4A68h8XZlFHh35B1BLBwjrYnHqqwIAAHADAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABEAAAB0cmVlcy90MDBfMDQzLmJpbmNgZGAxlol12M/AxMA6ScXYLpqBgYGVgcHCURPIYGFgkHAU+ACU8pyUYuvz9PnOh8cP7vwA1HMxwN3h44p9ux+oJ1lDFLZAFOZXXbbdNqvG6uPVp5YfwEYtcXzxWtqmJfCVFURhBczoCKAOoFEH2cIdVN0u7nw6c/0uEF/kZIDDPt87O2aqfbcCuerXlUY7gQ9gHXMcw4Q/75ma5m4N4V9xPN2Tu+v2+cl7GBgZWBVtYx2cgTpYlJSK7GQPABlne4TtwK46q3/WdtZ7Ayvj79ZW4nYTrECSgoz3IJKzzCfb7Ui6ZZ3n4m3zbIvw7gNgs/8AnQk0tPlQrANYVVpamt3bv1p7/kyT2Q3x2BzHmnMLLbfktFjtms+0FwBQSwcI6QZB3hsBAABKAQAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAAVAAAAdHJlZXMvdDAwXzA0M19hdXguYmluTZN7SBRRFMaP+chSMx+rbSaKUSFaSGnuOjPOzN15lGZYUgmW2EMwrEWEtoKyTUnthWYPK8TKkDIpi9LS2d1EA6P6w4TeWlppT4heiNLrzDq7dOBj4P6++c65c+8AAASioOmcDIccUnJ/uFL3GOjjey2iECwLHogmodTnZNW3ZbFkfXFA7tncTVnHi5TZXytJTFyx6InIC+WpCaJPClAwW4rfc1iprf9IbQzLZ80D5UTN8NWy1EyAYwK+SdbHWRSp/K7taeUVY8TO9aw603TXbM66Q6CzQsj8Uq08NxYrRwt3GGNXpRsWI0nWvBN1kQfg+AVZZvvn7ABm25sl7K+kMdqAxKj1dvblYiTsTdI6X1Pta+YxNwvLSWGPf2oQomBUkCvuap0IvRfEa4ORdFtjFZV+4BQ3vHYnSUFEaV7NiH0zydBIF/OtuIauuqfQyrtWmkbC/PdtrH/LZLDmiJKBUfrOnLbtm1QkHrH7kCnIpqKmuOYj+TL8mCqNLK9WGvM+UPNjZ4r9R5qFEEShqBBX26QcGXqjxSf3S5Vca45tdN2ocKn1uykVEat5ndV7XoSETeKJq/s7onecpkfYLIG57ClwiHit98R5+JoAssS8YyUO7/pIm9kczc+t2MvrkIShdO79vicAZ/mwz7WOFG6MTnz7m/PqqkzFRTBpXmdlrhQBEvi/20Ntfd0GR2eQhdffGE/FQwdRu1veqq8zRgBLu9TzZiFD9gxRDa0y8c5LEVTmo3lUL1hbMb7aNFoWSGfWXGe8bpewGzpY4ofIH+Xn3scy9EWZdrUMU3UZifQzXWDyeF4JG44kERXu3kcdjvyLWOMGKPj5kXKt4uUAWcucyCvFvEG+bOg+E9VwyxZZFksONjdyevUIUHp33kvM05mu765k9uv+MG2vHnL5RdPIEiRLtb04/4/cdkm9p+bhEapJPu8o3mYUkrz1XACiRagAd98WEzS0Scw3sLMPxqgVfgXchUKDEIFkFirC3deLgLXeVGB/ZFds3bbVW+dwVZ+y2TQk6ZrXWTM8JIjfIs0iadRgxRz6q0UvTI4aJcsQZaD+AVBLBwjnUTgmIgMAABAEAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABEAAAB0cmVlcy90MDBfMDQ0LmJpbmNgZGAxlol12M/AxMA6ScXYLpqBgYGVgcHCUZMBKNVr5Owg8AEotT3X2jZbjtNSzePkzg+MDKxigZ4Oh+0Y99hn77AC6mBhYGhxBClk+bpM3K5ql7/VeY0plh/ARi1x9AvhsXn16BJUYQXQaDAjAqgDaMdBtnCHHRF7dlZzzdsF4oucDHBwcju2oz//nhXIVb+uNNoJfADrWOLofP76nsPqG60h/C2O8WzWu/YlHt59AGi1pxCHvdkBsMQfsB2sIMvArqqoSLDjZxezqiljtYa4aoqj4qUru4MEU6wa5V/vWXjgow0AUEsHCLfPuiLmAAAACwEAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAFQAAAHRyZWVzL3QwMF8wNDRfYXV4LmJpbmNgYGDgB2KGlQvdGXr2uc1dw7H72Ivn1vLhZa4CN91cGIFSTEAMotlB6nLM3Bpud7kL3V9vnf8wYrfL4Q6nDyxFrsxAKRYgZoZiBoUZLgwZym5bN9btNtC4bK1qmWjveLTNCWQGB9QsRrC6qS4MDAcc1xrF7b594OUeh01f7GqVjtnxAqX4gBhEQ8AFJwaFDhfWtNVW+rOqd7PqzLazrjSw0wXK6EHVQoCBIwNDgGNJ38K9/G1pNgGWK+w2uT621gfJQO0G2+ug5MbAMMUpUPiM9e7ZYraHUtqcYuZ/tQWFhQAsTECg44Yrw4dw154rjDZMxpbWFxIkHD8VpzkZAqWMoGohYAPIXqfEzPW2l84220w4tdtm9/OtNsZAGROksGn43+zO0BDtau2jtbtAs3uP2p9812N3/zlyAuW4gJgT5j6nVHeGL1xuMx807tblumTdrCHlurZntYsgUEoIiAVh1ppGuzNcUHB9mpe9W6rXdc+P2O8uq7Z+djYFSplB1UKCb7Erg0GK67Xr5bt2snbbPLMPdrFdy+xiDpSygNoNtpeBw5mBIdhVWT51H+tt3j19D6Ucb3E2OgoDZUSAWBju33dOwMBx7HrYtm9LYazt+p2MjrmvpthaAmWsoGrB4IGPKwPDEadvx1/u1rMq2XvSUsSRJeCygzVQygaatkBhw1CxDxgfCo67OJ9Yp0pMt3vJ7+ZiwyniwAqU0gZiVli6SgCpc3BUOPHCeuPnSftqTVxdTFklHbiBUjpAzA3zR8JvVwaBerenP71s9hdNtp7UKuNyOVXJWRQoJQbEojD3fehwZXiQ4nq5Y7e19JVlNk8/3Xac3SXqYguUsoOqBYMDGS4MLQVuocytey938dlcVJ/neP0up7M9KCkBMQBQSwcIJun1RZ4CAABIAwAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAARAAAAdHJlZXMvdDAwXzA0NS5iaW5jYGRgMZaJddjPwMTAOknF2C6agYGBlYHBwlGTASjVa+TsIPABKLU919o27MI3i1D1rTs/MDKwigV6OmgvebFb/tdSK6AOFgaGFkewwvyqy7YvJ/pZnWjYZvkBbNQcx7oZ4jadv39DFVYAjQYzIoA6gHYcZAt34GteuXOjTd8uoAksa/+w2PMmvrW8FPPIGuSq+sUddgIfwDqmOK6ZcXbP2YRVuyH8K47qmoa7FHLX7DkA1OgpxGFvdgAs8QdsByvIMpCrWHR1T9rNW1xuJanZbA1x1RTH1537d7908rWKnnN5z+HJN20AUEsHCOi+CIPoAAAACwEAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAFQAAAHRyZWVzL3QwMF8wNDVfYXV4LmJpbk2SbUgUURSGj62Sq5TflVaw5Q8ht/ze1Jkd5+POrIWYphBp2hoZGxkqUriGuqXYZhYE9mlaEqEZRpFhNe5gEQZGsCtBUSwJ0k8RU0zMsjPrrPTCy/3xvNxzz7kHACAMDY96LdChSPd1C6/hpZt6kH5WNDZLJADROrR6rldzVSbJ8a3dMpDbQxWnCLK928nP/KgVdYgC0TrNYLhFwBYvXcqqlM+EKNTV72U555618eodwdpdAb7cdQIwytmWLPI768TIvbp5psTwhtmAaCNaPVfl5sHgJCb+Tvau2mNyoLGLoe3JzG4ke7TsqpI5gAKu68Q1V1/9Abowq58ZEqeoJJVotX112Z0SQCc/OTBMJXWsN0+Xt/FjLV/M6izC/TNR9fSuCO4+MXVrAL1kOE7tb7/NJh+28ymIUrXsqqxYt4bvaXKZMxq76TRjBT3j+UOnIUn/bzaOlRYLOErFhyRWHm9sGFleqBaf//3J6ZGFoPX+9/GVFpgPkRzvT8pb9C5qKSFOtDsfkwhEkegIf9mMUgu4DeLEVJHs/ZAyslj2iwy8mBMyEJm0rE+5wdhvotB/pJPSNVwxl53uI96bwO9FlKnV9tWFzQKEHxTzJKLEFczKvUeN3GDkKS4KSTQ6aq3fTzx2xlc1O5SVxWJX0Y0nbGn8BTYLSbaW9ammUMRP5mrrvLLNeUi5/LaCy8s3MhQiWtstdTZQr0hqLoz+SJUsX2S2j4qE1kezQYgS0UH+vbKqOZbTnfdQr7hWJX+WEFNQLBuKyIgO9fdh/S1CeLM0PGiiM4daqXLHNmJq2iHEINqEjln7tml836QgjMXR1rl4sydSR772jvNmRIyW9WnURqC1RqqsqnZN7APak9DDffbqhRx1ldD/AFBLBwjLqNWnlwIAAEgDAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABEAAAB0cmVlcy90MDBfMDQ2LmJpbmNgZGCRk/R32M/AxMDKwBBkF83AAGJYOGoCGSwMDBqOAh+AUmlp12xfLNe0ErKauvMDIwMrj5Gdw3Tt97v2PVi+G6iVZdZMVzuQQpazVyTs5prrWMXor7EAKZSYYeaQ81HLJted25oBaNmJ+d4OmiAGv42Hg8AHsB0ejisO9Oy8KFe8C6Tjww8PB2dnJhuJ4xmWIKMD49jtQQqBrgpwLLpw2ervLu3dIKs+lvLaT90+2+a8+T4rkEJVz/t2ZgfAJv4BOx/sD7DzI0842ZkpxO0+cLZ/F8TOCsdSLzerbhk9y4+VR/aAtCewcdhDPX0EqAvoxH61TIft1xfu4v2lvgfkMjmNBAfliG6rFfJNNqDwmmjMaQ9WuMQ9zOGtbKTNxPsPbUAKT8b5O/iu897DsMzACgBQSwcIJd0TDzMBAABiAQAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAAVAAAAdHJlZXMvdDAwXzA0Nl9hdXguYmluTZN7SFR5FMdPuT6aHjqOjo4ZvvrDpSXbHpRz79z53d/v/rxlpanZBEE7tCxEJBm1vYOpDKQyo4do2EtnijKjIszt3mnb2N5bQ61ZQcW0kVFuUgaZFNUZ54504MuF+/nec87vy+8CAMSjIGu5Cqt/VhtMkzQ3XyEsPNmnwJ1xfAiioajQMzbky7zNYaNLndrGhP4jv2hjSC49tahXiUL0AyrKEHheKkD28K8f92qep5eF68JSp9qfQ0M94oxeoZ4ADxT8kt3cHa+VuRL87v65kqstyRnaKSGy20D1UgheU/4zdwh11XYt5+9Ciawuy7cjEQxvuDwUoJo61+/T/39Y4r/aVSf9lOuRRCQOY/bA3LjtHDxbGFcOCLf8AXHi8Xh6d+whYkaUiDJH2lUSDqRFqeIPhMmCy15qChBvcbcsIXIa3nDNkQHWsWut9x3TbafEsiZm7/61kRAk8nfZwKpiFSqBX3jj0Gyd1Xqy75aSfnU/G4bIhBoW2S+hQAW3lfvy3VrVlGixq6RdiZmZxiyIklCWyNjuPBVyz/B7b/M0+j5F//w8T7l3higYAjDDG65pDIImbulocizbYBZ+646lLfU9FMMHbswemJv5GV+lUsuog/q8BX2OtCV17NW+ryQZkRWVPBizF9v/q6iLqkT9eKeeDm56snwlK0CkGt5wtePxK+V1PipdvlIhzv+jgTwO5JPpSGYYdyuUDZz4UYXD/crBpBqh3WvVGzqzeNGYDBaNKAYVHcnvAPow6xtra4WK+t8vBpqz+LZaGxmOKB81PHIO930FerPVDDfTZ83zCSOaS6UP9Vk8BVEqKmVwv50UPP8o2R0m/4S/JumXnr0RUwoTpEIkMw3vQD29UAAx2wsSn/QJrc2P7F7FylNfT2azEM02dgzf+1eY3xB2yEv16873YuK7EexKW608EtEo1MjIfpe60Hdaztlcrq/c1urIKIpjPedriA1RGso2uN8L9Lll3+xCfdfHu/536XHMaW5yFCEpNrzhmiCHlDd+vLj7WLZ0NDHotLbkkDlISozZ4f8tE6/GWbpiwVTpk8vmj6qwyBcbe8hoJOmo0YP9HsqhnM+djZW0cTWSOfgnWbOMklIkZYY3XG/Rt5QGG774NwUeC1t3xBCy+DCZi6Qc9Q1QSwcILhdVVV8DAABgBAAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAARAAAAdHJlZXMvdDAwXzA0Ny5iaW5jYGRgMZaJddjPwMTAknd7u100AwMDCwNDhaMmkMHKwGDhKPABqMbwfbBD/fVVO+/0vt4F5LO6huo5MNz7t+u9EqsVUCvr9twOO4EPYB0tjlJTL+x5YBa/+wPYqC2OBenBO3PTzfcwAA3SfBvuoAlizLcPcRCAqPBwfDhvzk5N9ZJdH4CumPGC3b70S6hVflW/DUghy4ZImMICR+WZ7bslxFJAClkLbffZ9c9YZr171ecdQIWsiraxDs4gfygpFdnJHgAyzvYIA10FVHpW/6xtmtdxy7Mqty07DDysQJKCjPcgkrPMJ9sd9dlhzf9Oz2bl6Um7D4Dt+uMIciZr86FYB7Cqe3fn2s2v2rrbz1hnF8SjcxzfbWC1XDTdziro7Ko9AFBLBwg9GAGBIgEAAEoBAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABUAAAB0cmVlcy90MDBfMDQ3X2F1eC5iaW5NkntIU2EYxl81L3Nq2rImZl7SaLJKktza2dnOzvftLG8V1IICWzciMkKChG42RoRUWjArFTMWNm+ZhWTq2VSMiqA7lOUfaUFIEEWWVlLUe+Zx9MLDgfN7eJ73fOcDAJiLglaPDc72C5Evn/XlaG8xy0LLrWGLBBqCKBQlPSMlnzvbBgNqm2dJrEGV5xLtW5dadfwVGoZoDipMFnRk2WCwgRpfNxnyx4Z8K4cyrRlT9yxSRpScJWXCdKUA24eElB97Rc/mWqas84zZey3TKu0UP7ubNPpTAjhvEkeVXWzTu32JUG7WsbtYPaI1sndmRgj87BcGC6742ku9zIujhL/kTrcakDByd6AXdhJwOmlq86jfrm0S3y3faGk5p7YkIJmHSgjm1fMAiSSnxNVf5FL6//YUcNM/v3JGJKzsnZkjFGDM4k2bI+ZbPviztGMcvIrhTEjM/50NFKlssP0G3VPiEEfuXvZ1Hj9Nex9nEQWiaJRidj91nA2cXvqpwyVy1YXGxYqDdHeZkqgQzUepZmuNXwR41mWtu0/Ew7VqXwRzneSOJlMOkUX2Boa7ivtF8Q97wo3KLbkm069QMrDpK4cfB0TuDvQO5qNPRSfT4vypB/4YJiYmefdxDZ+IaAEqcTbPmYa+LLL/hMb/tCrOlzT8jZ+v2GfGl2CVvTMTwwMXTbtMG9iugto+TWSjOXdVJi8gscl3KzzQm0GhvFfQFsezHsdFxhgh8FUX1lCJRcie0EDvbVz3PBn/eIcprK9hb3ZUmCuyzbxSakIpg/+3CH2p5JD+JNNqnGZCHo3nCTsqzAuR5KEWBvdrwCP4zUPKYQZ+VDLgLNNCvGfFWiT5cuZMnotI/7f62A3WXaHzNxZr+BrGwyUh0aGSgnlvA/dlyrGHdbeOsN2jzzlHaRxfgKRQ/pbAPdjWi0fAWdrH6xiv097f9EZPV4cncbGIVqNig72dBK52Cw82v/DZn7QwX0p2c8VjOpqMZBEqOdirwP3sRHiz05/ODYv+NoZb8H7UVISkWPYGRh0igHa/oElpNpxhPzNl39W05vcUvw7RetQ/UEsHCPgBYAEfAwAAEAQAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAEQAAAHRyZWVzL3QwMF8wNDguYmluY2BkYNlmk+qwn4GJgVXVM8wumoGBgZWBwcJRE8hgYWDQcBT4AJRKS7tmG8zjbnXXyHfnB0YG1jMudg6Fvy/t8n/ctBuisAeoEMyocNzq8cBy0qnfez6AjVrimNezwfrhwRArBqg81OgIoA6g9ce0wx3OXS3Z+acmbBfI6L+zAxziRGt3OnSvswK5yvFYox3U6CWOr7sP7nnlP88a5KZukQl2B3ee3v37zN2dQIUst7fNAjofyGjQm2anCWJwmlqAtQJdscKxIsfEqvxssyXIjjb9dAdFljbrmCseVhAP74E5f4qjPn/3npJH93eDFD5+UeDA8POfdSG/J9gxnhvn2MkeALrawLvcAeR8VgP7HIcbydNs/udusi6T3mYDMa4CHGwsG4Uv2rm8nWk9qXWCDSw0Dii77ObXF7MGAFBLBwifjoiRPAEAAHsBAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABUAAAB0cmVlcy90MDBfMDQ4X2F1eC5iaW5Nkn9MlHUcx79wx9lhcsChSAYhmJcNlJytyff5+X2e507lMBGKE03oB8mWbmputAg9xsHlw7VuK0yzjEgJ0zxcS9s9d5fVmo6cOOiITZwUzNaWP2rLE0TrczzfY322975/vN57fz6f7z4IIWQBuT845UCDql0uPRw8s/oHnHdMVdK+90tJwJJB8XcOCL3SaEcn3nVUW534Ppeq3dobIGUTXsUAyAgyUKH8uzKqc9nXGfxa9/r9uL7iDf6880sSz3iIZsUzkXBNRsghoYne4OMrjeGXnC9yhmkrH58pnc6m1xRBXQNyw8Bd3M8jbXRwI2dVt2EOCE+9erkJpEu2q62hgo8Kwz9eP8BNb/dwAhCR9p7p66+0I/Sh9OqRFry4ZwezZ/ILElb9fAagTFBGIs4V99WJu4p9+PDWjyNZY0eJ+a0RHpogiXr1KiLI7ZHUwBa2eNLIjNe38D7RxsJySPnf36BouwPVvaMMM1rQOuAMbT3bpvxcohIzoFSQOTHf2XoHuviYPfPNFdoCNYS9o/nKgfSobAWUBbIm2oouyKtWPk3J0XLTTKGatTF5w0iWDEMjB/XOVO8hBd0+pmwpztPSl9cw/3or5MhOl7wG0FraO0nfA9Z6Wyk0lUa8akQrOLFD7Ngnk/lAFoDmz+47F3xGcv3mrsjEuMLeij0jWp44xK8DUka9et0kaI1HWdm7N5zbpWotqUlicqCAOIGU09uauau+Zjvq+lY+Engfx+acZPLv/0FeWFIkpQAygVIS/1fUBKstli63f4bl7qXhv367QmIPhoW5gB6OT5XYo67Qjg4GlNKoiE1hC/N70CtM2oZINqCFoOzEeOc8MrqQae/0/oqj55bg1toyYfyXNn49oGepVy9GQt8cV5a12djXzffwVw0e0fT5abIBSAXtrf9fO5xGiDS/lhxpHD3JVO5uFfKi1/gcII+AcmbzHgXfmDg1WBzZf6Mj3PtnO/v0343CRiCV1KuXH872IOna/AlbXnkPRztW8Jb+Zr4KyHP0b5JnfAsJGgvKhn4LJz35HiOILUKGzybNA5IGmjc73wjklYid5Apb1f0yd+dqk9DQ53tqERAWtGi2bwn43OKlacztM9eyjqkzvHF7jvA8kGqaSfMkNOaRt2XXslXLyjHa9B05le8juUDyQLmJOPdPcC8XxM4GgY31rOJ69nxNjh89LbgAbaJevc5LSFgq9xX9ExoKagwJDQnDSU2kBshm0H9QSwcIoKuFBJ8DAACwBAAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAARAAAAdHJlZXMvdDAwXzA0OS5iaW5jYGBgZWCwcFzGwMjAYucb7OAHYnzZ5eAgY8DIwOrd2WtvaTnJ6gOQfTRgqz0P07tdB2oKdzIwMbBuz3W2E/gA1q/hKLLthJVcc+XuD0CJiisT7Wwf9O58++gCSCHL9tzDdpogHWLyRWAdLCAdBW9CrYS/7dwF1MHSm7LS7lChwO6i3KO7DkDlBUASaWnP7H62TN9pZhC/XYDr/C6QcZNUztlFA13J2jNF1wFsrrFxsB1Y+cxIZbuUnKNWX9SzdwGdzMLkoOWwNGj+rlRvtj0gf7WzFDgIgCRm/slzCJw+1XKpgxfIySzGxsV2AoUHLOd0sFsfAPJt1BXtNUF2mCyUdAAbLbL7gZ1t3OLdjvU6e0D8rr8C9nGucru07MStMyMabABQSwcIqS/rpyMBAABJAQAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAAVAAAAdHJlZXMvdDAwXzA0OV9hdXguYmluTZN5SBRRHMffqluepK66mllbYgfl0WZtOrOzO9dOmqZloqX+lZpJ1EYlFlLWGkV2EIlYCUnSYUQK3r2ZsKyU0lKIDv/oQKmUSqzULDt+szst/eDLg/f58n7Hew8hhHxAiNYLKMMqfDAYcMTgTEI9cco09/RZXgXIBSSvM2RffLSAOmju4fWluODbRvFG6i5Tea9odAXkBnJV/Gi/RkDoFd8yQ4utN0/ggOox6vLwEDUTkDtIXh2ho5FVIxztWkWWM1r8XjNOJua8pVYC8VXkCDONcjWCcKdC/P4pCNva5hlHBx5RBiCrlTNVdp83i2pe8mW5KonJ34vr/1yj3LoiST8g/iA/53nHaIQmmHOD+8kvY6GSZ9cs427iEBUnt6h4HWlrOdTXwCdlLsdPTx7G+vlF8TW/VSQBiPyvZ9ThziGUy4YXl4suFzbjnit7jFlDQYQHIE+Qh7O+agaVjrDvpPOEPqROtP1IIVVbbYQGSABI46yvjJF7ftCoJqt2F4ju3VOEmS6MMgKhFK89SjGLkMjoTzWJj7uLxGXtrXFtlTUxJrl0Jbcjbwb4Uumx+CU4Mf+QqP+8JO74eGVUIJBVoEBnXhP4OmhDvhEvOODVXrVvMtL+PECMcrf2u+tPEVCwi2U0Op0IUDfiku6d/M8VOZxaeSfqf3MpnWDRULJgnXtXHG7KIzKbU5jXtu28l3xTIC9nfeGQ9zJrIBaQre4R0sT6cPPtfI7RAgkGaZ31IfB5MyVdReTUd38xT5tu8vEdkItGnOJ1BA9bajZ5kSBSr65KaYlTdH3hCZoHYlFy2/NmhwhIt8Firl1G6BY/IL7qt/FZnWlMCKDZoJB/x+UEw3s+yEb8iiee9E2LYaMFfO1IiRk20RrFa497sRb0ZoTbeNJKdBbWka79Z8wJ101MAqBEZTb2uXxUQRkx9CbvW9i2Q0d9Ls7mwo4sNst/MRY5/qRjLgEMylRZvHUV0paEBjxJlZqMUdlcKJA5oFBnvw1wRVa6d2WS5HfxuaTN2WOqu1RLrgWSpHjt8WIaRkCwLc/u42YfiVw4nsb1fHFhkgGtA/0FUEsHCNuj3f4kAwAAEAQAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAACQAAAG1vZGVsLmluaXVSTYvbMBC9z6/IvcRIstN8QA9bupSFdAsl7SUEodhje7ayZPSRkn/fsePCXnrTm3maj/fmTK71F+iV1zcMkbxbfVqVRbkrRKFg8G/v47KoBFiq0UVk+DSausfVcQn8WniqEGBs55nRXYf5GSj1A+OvwTSELq0+ex8TuW71jUuQQ0DXkHEOY2Ta8eV0Oj7r59cvL0+vUJuEXOLOiR/YBaZwF8iZGo6sq7IsP+7EVm73Su43qoKYRww3ijjlU8gITrdoUuav03IMa2tinJGckLd5cBOqGDV+MDQjAVdjjavxHb81NiI02Jpsk0491+y9nTqJYgNjIB8ebN1QTIGunDnLQlxYywbtf3KJBozJDCNHlFBqLeVa7k5if6jkYbMteK8PQh6EAIy1GXEZUt+MzfNYy5op4Aw34h/QrMWj6bys7tA9BkFX+2ZygH38efoOmk3q9Bj8G9aJBdYmBDNp7rK1sAyc0+MQOpPZBeP4GNxv3WZXLwlq2F1KdyBHSbezLOW+lEqxT9uKn1UJcF4Uv4BF16We3U/Bj3cY9c3/QRthMHxm5HNk8mLIBf4CUEsHCKXYMAusAQAArAIAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAHgAAAGV4cGVyaW1lbnRhbC9tb2RlbERldGFpbHMuanNvbu19+3PbVpbm7/tXoLi1NXItJOP9cE+6Kn604xk7ztpOeqqyWQxEQhJiEuAAoGSlK/u37/edewGCBEmbskW3tZpJW8TBfZx73ue+8I9RksyyJh09+seoHl9kszS5zKo6L4vRI9dsQUU6y0aPRs8fv3pVTrLpL+6oe9Vcz/uvRn+aoxl/JPmEbe7RutT/9+x6Q+uA/qu8/ivb1+Un52kynqZ1nZ/lWYU6w8Lm6Oc3LwF66D4USP1wrRJaS6fnJYqcn85G6iE5W0yn3ZCrdJJnRWM8Lsu6yYtz41U6vsiLDIWrrJ6XRZ0l43K6mBVtlVk6zcd5uaiJUpWlzQz1V8sU6MEcTdImTc4qgexFqb+xznZKyes+pebXiR0ldT5JUie0VymlC/coJZD64VoltNbkgDfpbD56ZAdBFAZWbMVxEJqji/QyS+bl7yBkUy0yDZj1ADen8rclTfOU1GuA1ujRr/sj/FNb/a2824D8i3E26aHdUcccTdNT6N8K6CKbglmjpxmJmjbo2MgnxllZGc1FXhtS8i9GumjK4/OsyKq0ySZGfmYUZWPU82zMYU1ORNT/a5FX6PnRWTqts83UmWRn6WLaJJfpdNEJeTpuFum0hX0LLMyL+WJtENPsUkg7rvImH6dTtCPvyeTfUKPGoGanWZWUZ0qhey8WHP/0Osk+jKeLOodeXOXNhXp/XuWT9HSaabL+aR5AYpoqzQuomLY8S7kZvNDS82JilGcQmMxoSxi0XIYU+5hwdOblSwvHV7KBK8LxLSB8l0QXiKNTmrGB8G54NRDfZZlvVYDjm8hD/BUF+AsgfPsCzAjlIPJbnJXTSd2T2g6gZfXHBUdCeZUX4qn//Zi/jXFV1vVxT4SPLKMpjUlecxAGCv71O8N5sEuc86IZyrG1LsTWmoxYd8uGvM+yeSLETHo2QyKhPmc+Ukzz6+8XGQxLRUawgliZAaNUpV2MOS3LaZYWQ+bo2HmFPwq2wiIFarmUfZhnVXP3eDQH5fIxf36cUatld3CrV7B1E1+SgbrYKgc1cIWFGnbXeUhTljDYPi+YFX+Uj8Py+2ieGM5l7XsO7sXBelxWWZIhEU/yhrkhG18ybMvrIX+koDFZVMwcWN7oylPlRLu61OKgPKqzcVlM0ur622dTU2VZAgefVZfin1e5tP5WM+mtcIaqo5iQnqGEAeJU10ZdGrO0uDZYtT4xnqo4Q2YH6qwhX61bjTXuBG+2m7uthu3JR4yYIR1mJhkhjaiJRSOv12ZtjHfg67+8bahpBPyLUc6lwat8OjVqBb8W7qtg8zStwV8UIKid20TSVOUkmynBaDtTMla4zasSr2Y7fWNWLGZDURh9//O716N1eVBJ1YpItAV3ykVb6E1aTEr2BnYtpiV+LMc/+saShR5z1+Wmg7Yyo0SA6G5xgnkxyT70pWjONOO0pkFgqV0M/CUbv9VSVX1aHryBjavzaPsp9/rM1Mf4tT4xj06usvz8oqmXANABtq8lJYPE8uwMhq0t8XV4PkS85fvwjeb9m3VFNVSJL8vRvcYOceya3zDmld4x9u2rJxvFgeh91jzGQdC7Uco8nIIdTGt9VPb3lnRzxaZ8Hbkf4tjK/fBNO1VCmjF+1G8YkajCan3jE+JJ+ECU+PW3T1OBX0fi/Fi4nKFxolLW9Nz14lS9+m1NLD+tylcTlU8wk58sKoeLqRSTgURRC2JDaVl9104DK9mQVykcoBabw03L3IXJs3VxaOm+Dtc0fy3g1iEhIEWQKtHnaWakkwmiTSitZO7l7LRdoOyp9Gl2Rp6l8/n0mskji07z4r1xtijG31zYcksqOrSQX9+eD5BsBWXwYkME2wtLDV3+xHieX1IC6nKWrRRIdRGKzR9ZVTIPokCA1AxzIV9C1Akr541xVpUzESMuAEE2/2Kcq4bTYq3ZKpvi52XWa98ZNl5l8yxtlGymjVGVV0ZzlY+zE+PH7LxfvzZSSDIzNHC6vGJ+9mPZZI+Mv/deIyg/ZhMbKAAEJ8aklBbyYlxlwF4GUud/ZO3MZW9VSykb/gODaHWmKtMrugUG2czBcaI/FFMDySamcbpo0EtxzOmCc5RVgi741Yv5vKy4RyCFImfT6YnxVE3rtKJusr1a8fECiKN+O4BZ2nB2YQZhNY3JImt1f5pW7GaKtKXTa07LHp9BO8vqxHhxZlyXC5l10Lz4zrDEyQv2ps5Xm0VVALPlhK6ihAG2dLzBQEVISMxGEwjULKsqGzegWWmcoxfIQjoeL7gbotcchpbNSjAUxOyNskXpu93zIXfUGn0LweVpOk2LcaZ2eWT9cGH4Rpujx+rF2oYHKQbntCggzpd5akAaqocLpNbVcZ3O5lOWPKJg5jPd9ERq7lyV+5ZmNQ/GMyF10hI1Uaagz7qtBZZbnkjsjSySuedapkAUS4/ywphmH/JxeV6l84t8bJQVajwQ27Myq2YaXSu6y2VAs2gQ5Dfa2CKiAYdUhFOeNhAj3ZcWjHY+vMtTjDdKProSrVTukp2zaZk2n5rAfNSg3NaSxcGkZpZ+SGQOO2lpSO/Yk5qtBbTUvEo/5LPFbOn8+9511RiouXLVDIErxuFoDB8CmZhmgMH7FIZ9Yj34DB4POeyfDGbTBbTCX4HcKfbCtJ0talmLT5G+f9jE4W1lNJN/fZrBq48Z7fxmtBwXRh/9d0Mz5IGa7W4bMqShcSazDKeMChgdcVpVJONleV7vuxbiDNjnrHPPuWvLIYUsJvW41QEG+1/UstO+RPWHOjFQiYPsZzmoTkyyOTBY1YEWtmbYSFZD3nH/EGV8UUzzWQ5h3n/rkD8g9jqt7xap8yJh3N+n9BKkCf237CqruyTPOFLpAajbT+qYdCB5Qdh3tovok3LBEQ7obltD269gK9RXoDvEgOI0X5kbbp9b0kOakd9mFYfZzSEdIVWePoT8PmBqm3MtFZlp3TDUm9HSHCE3BCfq5oHeFM9Vb7YsiWWB2G+aNyqLzGD7wdx5qdThNu39XWFX0pTzRA1qjXErbz6fhbNyyMGWa1VZksfoSvN0kukZlNNrHceLz7kqJSlokdqLv7bleEOlJGxNKQm6S6maYibCqYFqtsAecxl1nZdr7NWZ1Dbu7qOVJ8YPatZJz1oxDodySxrGmSfJB8/ypvnI0tA9i1eWpZ0E/JjPQbT+kvQKVDO5B1RbUoxpWXB+rzd3WEy6pFnPH7W7io6N+VT0coH/te3AwyKBB+M7AJCHCElDHawpp1klmTWEpAHLT4yfquySS7WGpgeF6QfntXFVLqaqJsTqvcrCEW0aVxQsytOb/+MYug/IBwSD26vBiyyb1CKON3HaJ2EcBrFru14UOK7th89cKxqI05ZSqwK2pdBdErk15vfEbvhGi96ztJpedwKx3M4EYgC784yyAQlYk6IT4y0FgQKYzyB9MBNqQQB10nOpMc2KcwTM79uJgHU5nJSZ2nyFBirOEDOufv/ouzVMZSOk7IG8zGSSoL+B/8G+xuifZC/d4QVCEX2TQHRv2qRHsQdEpjkhU7JVETnitrFHsFDnavVhsMHNRKRwmYtV4csqO6+yWkwJbU9alLMUFFIbXFngRV1O1bINnB2c0gO1yqMWIMYLdDyTmupnohdyZPqIC1AFkDsV4ydTC88fv5LST9/8Ta01UPh+um4uKNTT/CM7mg+5766lEssrYuLXq7fP8O8b9efV9/rhJf9+//MT9e9Pb1glP2skGjyHoswBmOX1Kh8Iy9IiQXSmpsySrKpKLqSs8ADPirLdjx6Jv7X9f0PPtknm+y+7HWF68nLpEimbSjuOlVnsVIB5BsJtnieqtR3sJj+1OZP9gnp7aZsr6aBsMb7YZbi2+UIkppY9sF8KuGrDFOwu2TFOzlSLgsuvCcazMpswfLU2fdNOK+hSNBKKJsp4rW2lN36G2es7mZtMNmyYaxhONazMNNwFLtUI9frqph7bbfN4EnrP62wxKY1Kdh23a+v6ID1eH0GZuHcFRuwjHp4x8pD0xwMd8aw4DOPY813PQgTo+OG6xhzbd2oOQRJCdXyhLLKkQCP99duNb1szuKBHxX/cdjHJxLv+hQlJkSHRr95LKnjB3JA7Hs6yKy4HzpEt0P0iKlzkjWynJaPrGRf99Z6R+5Ng+/EQ9KiKhLspeqxbAWqOvSRML9BmxpHs1YFloQHj8tmNjNcGNzN0MndLZ5akTdKiyNLpatq+5XV3JCidqo1F0xVunF4rl69ny/RJIR7mkiWFo+zk/MQEt+KYuTL/xg+MG6XJw6nt4cz2XXM38M8IzmCHVo/YrYHbrQ09aLdj6gslAqPzdIG4WwzYzdMBEL0okVLk+P1fC0TfpznC9Fy0qqwmeSG/ZsBmCe91PC/zupYhnaezWYq/zRVcbq7sx3yaSrSLhhEEiQxdLE5lV5UO/r8x5rcDSdLp/CLtsX/wYm1vS/teXNT/ah+WSaqJAB2h+iknSEnBAsEg80n7ZnHgYLlPQGum1L9biqkFL5kj7K56rFmHa868U2BDwMKWFrKLK7ZwxbnRUuCQK/aAK/Zd44ro+0BdVqG7dOUHlnz46rg3n3PUXODnBc/KtWxBlQm3iqmJZrhJOETZprpVr3YuoW9XrHioWPFAseK7xUK8G79vF1K7TX19YJv6Sk67fKN2XdeLWW9DFkfyJW8p+8Jbb/9J43LZyZitB+ar0DaXKq/UxsdMRYNcJVVx3xcI0vcP+e5AkN4j83JWczMbVt5rhnwPe1TLoYRqlTUr21q7mTwQQ2+JL3XULiVMY5195rIE+ftRbt7vPe0MWjlNNmvU8M3qoZe+Yt3r05chfzK+SItzpTrru08+oej6TLoq0l0Q1ONblyCL3sjNGdKIcdTGCH8VdjI++NfvEOQdiKV3TZ+EPdokbWNkr8h2DfvKrusuxG7c9Sj7b5LeClF/HWPL+zaiQ9C2ssl+ZZ0J3ELgzZBdlvhQarJY+q5Ub/wByy7S+TzbNe+xg2nPjjekTQq6zjoB3iXudXur1Pte/rT+orvKidusAKL9W+7M6i2rn+WFHLDkBTOzdKp5JOH6rq0ye01M/Vzk6Gr2/SSdU2g+a35q2FZ3cUw7jVI/n5an4hHfcPPGm/JUju/rmniEdf/WJprk9MtpnXDfMZdE5Ja8tfXHTe/XFyFPa5jVJlN77CgUaiuzWmZZHpi8kWoebJPUN+8gSeikKPM6S04hvVf5ZOUQwJbX3QFHDTKO6vx8lj4gG5/rKVhDZmZl3VLss7Ri/N8fj2xTF1Y3bGTZOstvsjFu/wXmb551vV2wSVaMy8nqCs2W1+02Nw3RF4GpXUu9bbVnWdosquyLGd5nqvDNra1u4HWR/VA2L3gJnZr/V4BnHyhoOdn5OC9UE8/yc/HsL0kQGa9Msr4tq+bxdXvhkW75pTq98q3ZYnAqP5WoVTZtrHB//Y1mPHdz/ISQqTG4SCf71zQHHxhq71lTFvnYeLOc1YSPRtHxYsrIt2t4oucHeHtbeprDV+e84u+Jfs+K3I7GoCyfZGrfdHcgnp8SmMlEAy/q2NDODrm7XxzfKgeb7jTf9K6d1pabHrotP72SH5kG3ec68682afN1yI+KF+VkC/27l21m2VMW9U4HxF/K7Iqma0X/mPkd8qEtsdZKayOWJuIL2c0Dckzt61S7GRMuf/c5tullN5lzllWyCZxWUe3FzUiwdGUhXWZAYeAeGf85TYvzRXqePXqfXfO6se9Yhj/+cweT1aVi9+sMA471NzNs4dumIju41y9+z7YvzTYYFcRbyXLlrQZ/+mvgWwu0axQrF2Ko0sbyM0PqVnV1C1Beg5m8g6esrj9+Y989l5Zcyouku9hnO6t2l+puHs4kTFy+N/BPaYDWOW9W6jhkXF1wJb1bfkX8N+ZFF+AigkPejrQo1AbkF4wk60yFilBangO7WDST8qowFdt7C7v6zgw5/aAWeZsUEvPpNzneRzUfEYptl4R/avlWUHqL8Z9yd3iHPyVkoU5lTa/VcbsdksnSWvZ2sH7zSc3BlNH67NBdYvesLBjW6XsvSc2Vs7hbXncrybNUHQWpeC1KnRVynZ2uhHSyV0udKPiftlyrV8Dhwh2nhdE/xtQVlhWvYymqbk+6NtL23PVqyY/s3PiFbPli68x3wuiLoiTtVaZJtZwRWdlJs7FEX4fVaR99f/TyHvm2mlx/lRVy778+dg1u8xysukietwteVLDlbGfl0vhlW+nyxlUh9wma1KdR2jaV/ZATwSIQ3CuXVhO5O6nc3PBpJkc019rmLAik9v5LO58uSeegdy3n79bu1hi80HLznPCHL/HCUMcjljdKsuCJYRk8qVd3TD45MZ4qUmsmwSaoEt2Faaz5MQ+/0cwPD8gc7zoPcyd0P12M1xfueqDuhFJjaFoZvW3Wxvc/P5GVvC91brSF3nxy+MfXP6rjoU/evE5e/8LjoH9/9uL5D++ePdWP7avXq69ef2szvhJHqW1YWxz19hKdr+YlCVxw0+cAWzu7rLhz/rW98PyffteWUieAykWDzve84L/9FvVrqbz5Y9XqXcsekUh1zB+FEQJV5ZziOk8uQWe5Rnx58T/RqvJznmJIdGVFFf2lAHYiDf6obrKhlO/49Vt7OzzrSEOr/+D9tu/Qtf3u+vrZtjLc6gzq9ssqZsmnlrdUWvtqzaCC+vSwXo26lmmbbqKxfVsvZjMag/14+u6qfJrP3lE8NjC097ancWrr8FvdHyW+Hle5xC54O2oZRrrvwoUuZBUZta2I9/nWj1OJqnZq/miYp6rJKkD+Rz1EbLc5+mx0lMemcra3762eQl3iNhngtryg753UPRiquV43/Cyc28XHwyCvxT3/gzl0cnrd7Im3Fl9eTImg+LHUv22UgWh7c+AeiOYFgzxWu238ejcb7oFf+uFQ+PGSijUEu30PSxRP/LMhkqh6ICTBZCRBl/uKI7n8UtU7AJtvgiH5fCAMyeh1FPfhdIsmvDsyaLk2WGaleMYc/ujXEeKCX32r/ceOXTfmQ/u/E0IdG/+4/McJTuzffvuTWMsdQ4ns0zuIl32rbzX6Qfd472fbs4P8wkKTzuZ74vWuq3fLCE4W3ZaBffB72la7j1M6VrdT2NVMCu9nEN61CylyV9KhUJ2ln4Epr3M6FKK9y6VuiO3TtoVbRrmXKd1IEH5ZfrXxEKLQTyhvIAw9bA8gDj1kbywQPYyXIrHigf0VF2z+U/4Hdz9yLMc5tu1jOzKs+JFnP/JCvPo8aHQPFWh8D72H/n8OpY3h2Tg34gVzKIQHN4qXD35kLx9Cv/cQW277YJ9YvrN8sANv+eAE9vLBtXvF3KDXgGf3H/pvfKf/0G/Nj+PlQ+D6vYeg/xCHy4fQiXoPfv9NHCwfIrf/EPZai/voxEHXmgMier2HJaJ4iPzlg21bvQfX7T34/Yew14Ad9xpw7KD34PYf+p06UQ8d1+o17TpO78Hr1XH9uPfQx9qzeq15/QY8r/+mTxAv6j34dq+Y7/aa9v3+Q6jqQDAt0zYd0zU90zcDMzQjMzZtAG3TdkzbNW3PtH3TDkw7NO3ItGPTsUwHdRzTcU3HMx3fdALTCU0nMp3YdC3TtU0XTbqm65mub7qB6YamG5lubHqW6dmm55geevRMzze9wPRC04tMLzYlObc4Is+D3AZOFMUh2gfIi6M4ch07dD3Pj0OC7ABM9mzfs23Xh1yZVKrADzwHNI1jPwJyAAVW7AWoztKOy8ZcFLO9KIxCzwuD0JGadozXkeXxIsAgCtiDazleGFmxFdlRbIWWCxhQctAzOMCjUG7ILhxIOLoMIwc1AowPoMB3oxDQMPa9GKMDyA+CMPQcL7CjIHBdac2DfgO70Assy0ILAkPJMCIOgW3FDkFuCKjlW6ETuq4V+AJzojiwOBYHXA+lOSd2gAAqoxiIJeWcwAWNXN+3fd+xBV+IcxD6IACvPYws6RWv4gjDArYWOyfMhuZFaNTFc2CHgoodoTtQJAYBAl+1By3yMPjARvdWKOO3AysittJ95Al2tu+gG7AqhrVxFFFssMCHpOMfC92rchiTZbugZxT7ruqB4wljoGJj+JYMzHZi23bAA9AlQAkFA7lBXGBmObHqAY3jHxdVQ5JHYEA/ji3Pj9BtoBC2IQ+glA8zEqJrBUPTIWTQc0ltBXIAiSIodAyJUj2ATV4c+q5lQWgVvoDAjoee7eGnQteKHMiS48FKWJpuVsAhichiIBrkok+QyrMwBF3Th5DaxB89a7pZPsgUOeBf5EaWGpXlWewmdkI70DXBOgwIAuT6akgQcg4LRaFffqhgsHxeGBNnz9FjsmyInO0EICOYoFuzIiAH8gcOxFi3ByQDoIDRBp5qzyKDQwt/0aat8AUMIujFJCRVSCk6B+q5wDaAZgqnPTcmnUIIvg1xcEgUWEXwCi25ITygEn9onmN5XgS0HRoLgrwgQFXSg4IeSjEMB6IYx+RC4ARCpxhiALX2gZETQ8tEhWMQFKOFXsPAuDIOiLDv06KgkchWY/PA0ZBjhghZWq5FKkMIQAxmWI5irR+Dt55PdYF0CgwUtyMXugzFiiIxHdAYqD8wB01scJ44o4oXgbtoAvRWMga7B6cMtQtALegTQQF4FoDQ0GOIvGis7UegIwhF/YxUtzYYQ92BslPEHWnO8yGppCh8EbCRcqAw7J8L8xODaUJSGFY39mBhQ9gFoBAKDAhQ1CEJaFWsApTCJr8gWxYlTcFcL4SRpLKDTa70i+gIvIaxQBeQVekDhiUAS2jZaIRigXlUQpAAdieGEgqMRsX1PR+yQY4KDGaT4g/Rh5UX3QOVQDaQ3YVQu6LIVKoYXIO9B0MsMXioAfsCJvqWYKqqAgeQBsOKQzgeVQ6jpXJA8cAWT5WzeGesFcMUeRgw+6CAw9RB3eB4YKttgUU01xGcTEQn5AksRBU6ILgsB5IkMEhuCNyglmwlEJgfR74Lcw7aoDNVF/2D6VAhN2QVgcFdOmADLTIMoq9gYBltpwch9oNYYOBkAD1w0S0I4yoYHRx6pczHGhcXQ41RHRYHmKtxwOjhMYRVwjAs1Z5D44ZeQF0aewUDWfHkw//ZrqXGAXEFfnB5EAXfckTz6aKh/JFPAYfHER2E6rBrmmbIn6fEHnSCI4WziWDrlezGnnhrmE1wVOkCRAcOCE8++giVWBERqpxFZyiaSl46hFo2ggdFUTRHCwepp2DJKCDdCDVALKAIyyOjDSF6dojw1yEHPAWDtsAaQYbgakRY8BSR5bDwUD9wUGAOu/WhcXDAsWIui4HG7B7NQMwFGNCbxRaDA7BBOATEPL5ABQRDihs+cIXphJWj11FVoRwMGICfH1m2qgrhAokhg35oa4ZjOAEsGawulNQXXaMeBNBH0NcFi0MxGoyDXJpkSCpoKIoPGGJneityo4UFQQyzTE0ASwMFciH/aAjSAFUXmwatimOoYICCFD6FDMImYAMjC4sYxbocowtUgsIi6og00HVpX8BfgH0NsxFfeRgzVDoQVw+Y5dNcUXMom6ogVCoO4a0ReDmxEg56DgRoAUhvuWCeogOMFJADKcVXOwoGy4pe4DYhsi1MTDFEDQYVLNMNInyKiDzFxHI1jMg4cIJQiEDRCw7OpnF3GKA6umNQGJ4qhhmN9Uhgh4EDuA8BCTRpIPYMZmHeYnpDxSdoOJwjLBsMUIsK6kFxgJnnwAXryuIJ4T3RaejpTiCXtkt1AqXtWNcGslBZeCnoVKgRZLCL8NCBKYZ90D3D+tL5wPbAcenKFqWPLooRRAuDKKB+6IqktyE+pDBiefgV5eVhiOFpXPIAPBZbjkgb3IUzQIgPF6lC/JBmEJ4UYZIyTxAiWiBwHpE7jJmK8fFIDqBa7Km4F2JpYwgoBasIAyIwC/4Ybg7CD+URHjGujhiVQt1IVoFB1kKGX9Bf6IsK+wNG5Qg44Jfg3iQUQFBti/2jL1SRsE+nh7ExYAwjHUSAiPTdtEOxCq4go7CRsEbQawxIyimDAaZzFLZ4UOhoDLlhQI4eHJFIcBQROLMVmg5LgeAMYUxtekZbGVPEbFBCSCO46mkviAZiRoQe27J1ZoHgxePgRSo1Ksw+4IoYDlAwVIxDdxQw2kKe5MYKFjFMAC0R9kQqkkRI5FO0wXsmDQKjJrMsBuXpWBsBI2wtIhWHKqkC2oCJUEyPyeRFgZjQ0QgDl1CH0UztkMnAhkH7VIwHswIZYS4HboS6V3p2VLOZ8+io3xd5jxhNhjpzQbwCzBCLAMW4zVwYO6CI8FZRmH6IbgJ+n1ZHgSDRITUDjjZ2dDGQBvECOBlDixRy9C02KwbMN1sYQDChiPqsWKcuGALqUFlskEu3h2hcxW1IrSyFsqTHNuUfUY4SYpvWh+SAGaZLUDAwBkRHlIKY3dF9wBLRljItiHVVuO+YAgsq6KwPXEcxjA9yp1McChd4AF1Bk56vYR4kM4anhs9rY3xYNcgD4hWkOcQDJtClPUHgxYhL8nuQldmZ4zPlFhsNbw758xjRQtFDQQ3+yKE9hdGQDFGUmsJg0z1isGoAdDXIZWixQxWd0bBaNOpI1Cjtor4MBWE7Ke9QeRkU40MwCeoKL6BcksOQEJoON+fZlFwlrZKVkei2zlKQjsSSNcH5gywSqsSu5F7QMFeiNMLgwjBICCxkH3GaxCXIqSDpjL9j+kOCwElgBukCW2wV+HBSw6Pld+jORB/AACQAlEKPkxtihChxqMpwC+LlKhBQoZeH5KMRCRJppkPxmNB9xT8IGcgE8jIS9VVKbdMcMh2AMEbM+wQGh8wIB3IEt6/GxRkESfoZTDlCEoR2CPFAO8a1tgqnYdEdRqGIQx1mtSpU45g4E4OMQrEV9Bc1sMS/+wo9kBdkQ/sidqKuNpMwTmbgHQxWrEJ2+gpkowzEVLQKZrlkFg0lQxBpDiiAZNRajMxTuRfyE2gRonpPYieJJC1OjSD29SnGSp4YqUvyzWw+UJEkYwvEsj7zSFfHzcQDkg1MYMh0/B8BB/oE9B21MXxIQwBpBVHgLVXdkPk8eAizANekYIii6R8gdJwPiBTMFhVBYMfJAZ07hMxe4VqhyIo/VqyqYcicbHJ0OUZtqI2xgYaqHJ0Ng2KQGSNSOCP1Dkkmn2maq3MMSGbIOMWnNHdxPaSdXpdTVsp1oC9AofQQR9fR2SzDATpAqEAocZpMP1HWOEsVaoaDbAhqLJFcBDUqrvfp3BB6c5bB0pyEAnDqB4E9FNzTuQicMO1YzOkJFXZL0O1wuCHDbqEprzWCgAHDQOaiBGbTadIVI1yIVLRP0gFB5r5QeRVi4y+Qg19nkooIhTAGujIdAH9B4RAYMgZoGRIMi/xU5RDmgHYQ4xDhjZgVCqktkTMCIF9NrjHax6Ai+jNxyQLDD+TfEH7O4oU63Pc4H8JZE/Sho30aega+5KdKA71YApaYaYaeNbDUnU4SZiFaUNENgPBQEChqKqROtxhGUCsaF5+zhZ6qjpdQarhUn35KBckhw2pfrCsjOgVjTEgNgkGxdGgZgGHImpg5Rm2SgmCU1pSxNRNEVRkGEeiST5AjmWQFDBXhyThb6qr4iDDOVjicvHOUlwcMTh6EhL+FU3B0J7CanMGAjIc66OaEGPwnuqKgtzD4QM75hgxYNM42J5cZzcbcSabx42Qkp6qgSoGiAaN12H6JB1XoR1hIxseSbEQ62UIJREkxEy6mcr4GOpKmMdKzdKYAzYVUMoECoSNVGZwIEIiGDDEtZTsAk6wIigOvpZSJQIdzdbFMSbptZRopBB6cToh0WoYinIvh3DCYoiuDF3ZAvwJd0WSFq6If8n2ZqlVb5saXyWDXnNrOzhOR5WQxzuVym+skL9T+Am5CaNRJhZ072r7I/rofecXWi2XPo/sNdu0GMfW9n5UTYrs2hUn5W8bpwin3pBJr3DZSWTptLq73RUzXumXkpmndJPojsvugt6x3+/sQE34Yai9Ra+vcMm71dZ1My3Qy2ncrVFfx1jdKz9TRMTkIMdpnD+da1VtG9Ix3HaDLvVDsKt0ycvPy93Jv5LpKty2DV+l8b+S6Sodg6ySvx/vzVWod4kDLvth1lW5b6vLJPjaPxQ9git9n13ubYqlz2/uVx/M64SHcy56Z+yRP1q95y0iW86xIziZ7EbCrc8u4VfPxDQnYr3nbEsjvBKX7EbCrc8u45XJ1s7ordR/yLevdtoqUTTrd21Usax3AGO+LXFvnllH7Pb1cNrcfd1eq3jaal7Nkmi6K8UUyb+9HqPfFd2Mbt20X6xtSt1fx1qVzfJEXWTK/uK7lauj9RXVDAwdCelryu6J70nat8u6zktyIObKd8MTC/9uPfM91bNnGzAs+5IfNCaPAiq3AD1xCuNzjnERc33Ui1+dMvhyqlGXtyA91q3LSkivqcewAGsiZTMeN7cD140AawU+XpzTdkH9G/3th4f/YhWevPkd9jHzOQ3PhUZqQvQKBJyX+DTpr2DZHEuoPlfx8imEvHshIfj3OUtM4/o/ZB+f5bwJ5mReLD4Z/4p1Yx7brHMs1i/nYOEpnk8CTWtzsZnPbg4xglNXJs7cjToDd+gzWE33135OyOMvPl4cO76ex2imjRN+OmCz4BY390uQfnNfd5Yq6+gERZn9/lMW+qt1HumviAGjTZNCt8Aq6z8Gd7Ri6nYMOoKX7zbxVn+wHclsbkE7S88+RF92KwVYOiLyAbo61VD+kYkrUzCnvvXKVFcVkE4Zq4oCYt5Nq6jKBmxlCtmHoNg5O9HFZfS7RVRMHxFzfKPZ5uC+vJTsw9nWTNot9E40+5rqBA6DcXWRUZ+NFlTf7rsoQ67YNo2vjAIin8zzJPjRZwTZvQuvvf3phPFs2sDucd3lAinHq99W4yccPX0L/r7O0Or3OCol4f373RP66J26EONlRx6JteObr2jQQNl+Ui6qWW2g935ghPub9SSwEXBKG1Mn8urmAN/p9kRaztGqQavyRnKeWd9pIvLyeC0Rt/I585D1vL1ULZNNraVWurJNf//H8cVnWjWl8P0sRFhhvXfycnpdAi8u4/HgaAIumfPXSRExcZcYvKPEurc6zRn/spoV7hwnQX/CGP0M+DVLfLzVvnFqTOxDbj7Dsg1mPtreN5Jh3+taL/WYFnrSVbhm5rJ6Pd5JuiNqztz89WTMT7vB6BpVR67tCWg717yzUoOHXdJiCxxbP8liuw41S3F9kmzx7EHATpB1FPO4W2eaxpPG/WqbBXUemwS33phFyM5LBHUh44OENqLHNnSkohr8+/vhOzD9REMWmwe04eOf67MVwY8sD0EPPLlsMPZT0uP3QNHzHD9CmD/T4FHNfmsEjD3jihjq8C7jlmzgQPyMMPHmS000G924CM25WBsqc8EC33ESDknEojfFknG/zL7eg8W9oBxbvBeUofT+UgfkyII4gtEJiHuJfDyijiMt/A56IMkLLddm5xU65ddvgwQk26isKeS5bcrhDyeBpLNLLjUMhWxTxDw9m4U8QCJA729g1KIY/MTdKGQ7wDPknJrm51xnUk5OS5AoPMBhy1k2o7rMID9PwTxgEHNixTWsKcVpegSPfian3vCRL7uV7paou77fcYGw3F6ROqC973aBb3oc+7Kj3ffve7U7nqfpqeH6W95cEeoXN0c9vXgL00H0okPrhWqU/uys9Wyvx6JhbuQI5msdzeD6kYKTUab/hiEXcPhz9nareYuR1YkdJnU+S1Ant1eF0H7XqhqN82cO1Sn9qVPvDiXyeauJ2NW7v9GQL6Kod+pSrTdsNZDL98qibaYx5oGq04TpW3u7zaMNRE3P0Rr8anD8FJcpTNKA01Vz71pGikr62deVN/wuKlcMfEQ/3hNzj5/Kkgm+q6+wwmnzC23+7+3U2Y8i7gh5tOCaH5mf1VN7Z3Ezp2nJklfvZ3T9XTPK93n1behffRO/inXoXWdz3Cx/G7e0ejx66X1LtAnu32q3tA+2p3eqBkFbpxIl8ls7x4FlMRwj/Z0XBbp0boNfp3NoW9r7O+Tx+4NK7hggVLP/PTRdHt5q35YJn/X55SbMqp9Pj5VPVrNNcwopRVkw2MAMWploU+oXje9Hy9nEujde8i5pD8Nubzv+xvBJ79FT9GnzntE1ETKMT/xGUPpWpWX77kp8XUgKOhJmfiRhnJj9HMkvfZ0beIHmenh0rkTtVXx8w2ovWf8Afo7fbVzpXd5EbUNDpRLodxhHLK+cEC/Vli/Ytamy9yHv0hG+Ol2/az2MdqTbySf1gYwMrQj5spffaBFEyY56Bipcas6MJP/lCoiKb5ce897olXKiapZPNiA0kacsQW/IYbUE01orb6N/K03ZqBuBP2I6tL01eK9lnJRu6TKuc5fl9+rISyWBvv2iw8aIHRvG1e8t1Hz18l1I/elZMZD2AVzbP8uk0V18/kHZoL+ouczLU4ybabb9mfUhEljWWZY2jLB1fGMiY5OsrAlff0yL3NTulkrBtqZajN0iwtiC+QVlH7Uc9Opj6shMVZeV70MZosLm+uzK2hWyiwe776Yd0aIfWK28cncFeUW+Py7PjOp3NpysfqxYr0VdYIQkeQXHq8kWmbgzn924M/J3JB2sMFuDHNJT4tt+N1F83AaGvLnJwQO4sVbYmnfwO70Du9MSp59Ke6J/t1260cmYn5yem8Vh/u0Np2coXBlpBUo94vf5ZgtFrDWg/FNGJXN+Ej96q76xtYf6m4xGa/L37FOtPYOnSTO42BUpFN1Tr9bfBvkqMuUmxb33+bLPh+GpzZy0V9pypakdx6/v8sql8V77HpCWmG7avb9i9/kY30SP4re9y5h6UyWfg/FYaOCDGc1quollZbP00VH9a1tw+/db7Nsrgyym/mb/yOofgJApCOwp9k1Gpf4Lo1bMCxzd9z4t4mtW3eVEIJ9sRKVsnvEeMx1Nt3m/jq0N9PPDLk+6ub0U8uSiHNnmk25Jz+h5vbFLXnLkhKyFoRgV93IunTx2PZx154jSW416tfbdOeMGW4yCv4lFP12OSOi5nc0gWTUj75RrGvH/+t/8HUEsHCEhQii/cKwAAKOEAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAFgAAAGV4cGVyaW1lbnRhbC9SRUFETUUubWQVjTESgzAMBHtecS+gyCsyKUKRfECxZawJtjxGBPh9RCXN3q00bdY2M6kzikZeIDVpL2Si1Xc8XtMTsoIq+GjcpXA1WpCYbOvsPGL30VrnIGQXOT3l+KHwHYd3ZgSt5tYKTbDsx5IukTsKnQiZ6szYxbKbatn5j/t6vff6/TaNwx9QSwcIE4XBhoEAAACkAAAAUEsBAhQAFAAICAgAPE1yVaJZYp3RAAAACQEAABEAAAAAAAAAAAAAAAAAAAAAAHRyZWVzL3QwMF8wMDAuYmluUEsBAhQAFAAICAgAPE1yVa74UgyGAgAASAMAABUAAAAAAAAAAAAAAAAAEAEAAHRyZWVzL3QwMF8wMDBfYXV4LmJpblBLAQIUABQACAgIADxNclUBG+x01gAAAAkBAAARAAAAAAAAAAAAAAAAANkDAAB0cmVlcy90MDBfMDAxLmJpblBLAQIUABQACAgIADxNclVeglh6igIAAEgDAAAVAAAAAAAAAAAAAAAAAO4EAAB0cmVlcy90MDBfMDAxX2F1eC5iaW5QSwECFAAUAAgICAA8TXJVz0KatssAAAD8AAAAEQAAAAAAAAAAAAAAAAC7BwAAdHJlZXMvdDAwXzAwMi5iaW5QSwECFAAUAAgICAA8TXJVbyWEEHECAAAgAwAAFQAAAAAAAAAAAAAAAADFCAAAdHJlZXMvdDAwXzAwMl9hdXguYmluUEsBAhQAFAAICAgAPE1yVZ3HW5r0AAAAIgEAABEAAAAAAAAAAAAAAAAAeQsAAHRyZWVzL3QwMF8wMDMuYmluUEsBAhQAFAAICAgAPE1yVQrATw/MAgAAmAMAABUAAAAAAAAAAAAAAAAArAwAAHRyZWVzL3QwMF8wMDNfYXV4LmJpblBLAQIUABQACAgIADxNclU2web2zAAAAPwAAAARAAAAAAAAAAAAAAAAALsPAAB0cmVlcy90MDBfMDA0LmJpblBLAQIUABQACAgIADxNclWe2xbQaAIAACADAAAVAAAAAAAAAAAAAAAAAMYQAAB0cmVlcy90MDBfMDA0X2F1eC5iaW5QSwECFAAUAAgICAA8TXJVtqfv0vUAAAAvAQAAEQAAAAAAAAAAAAAAAABxEwAAdHJlZXMvdDAwXzAwNS5iaW5QSwECFAAUAAgICAA8TXJVmyXgC+8CAADAAwAAFQAAAAAAAAAAAAAAAAClFAAAdHJlZXMvdDAwXzAwNV9hdXguYmluUEsBAhQAFAAICAgAPE1yVSpWVIXaAAAACQEAABEAAAAAAAAAAAAAAAAA1xcAAHRyZWVzL3QwMF8wMDYuYmluUEsBAhQAFAAICAgAPE1yVYma49WPAgAASAMAABUAAAAAAAAAAAAAAAAA8BgAAHRyZWVzL3QwMF8wMDZfYXV4LmJpblBLAQIUABQACAgIADxNclU2N0NU3gAAAAkBAAARAAAAAAAAAAAAAAAAAMIbAAB0cmVlcy90MDBfMDA3LmJpblBLAQIUABQACAgIADxNclV/Mtz0mQIAAEgDAAAVAAAAAAAAAAAAAAAAAN8cAAB0cmVlcy90MDBfMDA3X2F1eC5iaW5QSwECFAAUAAgICAA8TXJViEyVX+8AAAAiAQAAEQAAAAAAAAAAAAAAAAC7HwAAdHJlZXMvdDAwXzAwOC5iaW5QSwECFAAUAAgICAA8TXJVuMUvts4CAACYAwAAFQAAAAAAAAAAAAAAAADpIAAAdHJlZXMvdDAwXzAwOF9hdXguYmluUEsBAhQAFAAICAgAPE1yVfDbyBcAAQAALwEAABEAAAAAAAAAAAAAAAAA+iMAAHRyZWVzL3QwMF8wMDkuYmluUEsBAhQAFAAICAgAPE1yVfywHLXlAgAAwAMAABUAAAAAAAAAAAAAAAAAOSUAAHRyZWVzL3QwMF8wMDlfYXV4LmJpblBLAQIUABQACAgIADxNclXUDRGP4QAAAAkBAAARAAAAAAAAAAAAAAAAAGEoAAB0cmVlcy90MDBfMDEwLmJpblBLAQIUABQACAgIADxNclUw3crQnAIAAEgDAAAVAAAAAAAAAAAAAAAAAIEpAAB0cmVlcy90MDBfMDEwX2F1eC5iaW5QSwECFAAUAAgICAA8TXJVN4VyI/wAAAAvAQAAEQAAAAAAAAAAAAAAAABgLAAAdHJlZXMvdDAwXzAxMS5iaW5QSwECFAAUAAgICAA8TXJVfL30SO0CAADAAwAAFQAAAAAAAAAAAAAAAACbLQAAdHJlZXMvdDAwXzAxMV9hdXguYmluUEsBAhQAFAAICAgAPE1yVVA39LnsAAAAIgEAABEAAAAAAAAAAAAAAAAAyzAAAHRyZWVzL3QwMF8wMTIuYmluUEsBAhQAFAAICAgAPE1yVf8dhevSAgAAmAMAABUAAAAAAAAAAAAAAAAA9jEAAHRyZWVzL3QwMF8wMTJfYXV4LmJpblBLAQIUABQACAgIADxNclUKct4JCAEAAC8BAAARAAAAAAAAAAAAAAAAAAs1AAB0cmVlcy90MDBfMDEzLmJpblBLAQIUABQACAgIADxNclV/7LXw9AIAAMADAAAVAAAAAAAAAAAAAAAAAFI2AAB0cmVlcy90MDBfMDEzX2F1eC5iaW5QSwECFAAUAAgICAA8TXJV3Jr6bQUBAAAvAQAAEQAAAAAAAAAAAAAAAACJOQAAdHJlZXMvdDAwXzAxNC5iaW5QSwECFAAUAAgICAA8TXJVLfuwHe8CAADAAwAAFQAAAAAAAAAAAAAAAADNOgAAdHJlZXMvdDAwXzAxNF9hdXguYmluUEsBAhQAFAAICAgAPE1yVRhmqZcGAQAALwEAABEAAAAAAAAAAAAAAAAA/z0AAHRyZWVzL3QwMF8wMTUuYmluUEsBAhQAFAAICAgAPE1yVT2tURjyAgAAwAMAABUAAAAAAAAAAAAAAAAARD8AAHRyZWVzL3QwMF8wMTVfYXV4LmJpblBLAQIUABQACAgIADxNclW1mtPc8gAAABYBAAARAAAAAAAAAAAAAAAAAHlCAAB0cmVlcy90MDBfMDE2LmJpblBLAQIUABQACAgIADxNclXoclybsQIAAHADAAAVAAAAAAAAAAAAAAAAAKpDAAB0cmVlcy90MDBfMDE2X2F1eC5iaW5QSwECFAAUAAgICAA8TXJVPi1BRBsBAAA8AQAAEQAAAAAAAAAAAAAAAACeRgAAdHJlZXMvdDAwXzAxNy5iaW5QSwECFAAUAAgICAA8TXJVvEnHDfgCAADoAwAAFQAAAAAAAAAAAAAAAAD4RwAAdHJlZXMvdDAwXzAxN19hdXguYmluUEsBAhQAFAAICAgAPE1yVfoSzvAKAQAAPAEAABEAAAAAAAAAAAAAAAAAM0sAAHRyZWVzL3QwMF8wMTguYmluUEsBAhQAFAAICAgAPE1yVTxJazUGAwAA6AMAABUAAAAAAAAAAAAAAAAAfEwAAHRyZWVzL3QwMF8wMThfYXV4LmJpblBLAQIUABQACAgIADxNclUBY/CRHAEAADwBAAARAAAAAAAAAAAAAAAAAMVPAAB0cmVlcy90MDBfMDE5LmJpblBLAQIUABQACAgIADxNclXaZ+8W/gIAAOgDAAAVAAAAAAAAAAAAAAAAACBRAAB0cmVlcy90MDBfMDE5X2F1eC5iaW5QSwECFAAUAAgICAA8TXJVAJKt4wsBAAA8AQAAEQAAAAAAAAAAAAAAAABhVAAAdHJlZXMvdDAwXzAyMC5iaW5QSwECFAAUAAgICAA8TXJV41Rk1AIDAADoAwAAFQAAAAAAAAAAAAAAAACrVQAAdHJlZXMvdDAwXzAyMF9hdXguYmluUEsBAhQAFAAICAgAPE1yVZPHbjb4AAAAFgEAABEAAAAAAAAAAAAAAAAA8FgAAHRyZWVzL3QwMF8wMjEuYmluUEsBAhQAFAAICAgAPE1yVRYpTp+wAgAAcAMAABUAAAAAAAAAAAAAAAAAJ1oAAHRyZWVzL3QwMF8wMjFfYXV4LmJpblBLAQIUABQACAgIADxNclW/v4tHGAEAADwBAAARAAAAAAAAAAAAAAAAABpdAAB0cmVlcy90MDBfMDIyLmJpblBLAQIUABQACAgIADxNclVSadTKBgMAAOgDAAAVAAAAAAAAAAAAAAAAAHFeAAB0cmVlcy90MDBfMDIyX2F1eC5iaW5QSwECFAAUAAgICAA8TXJV1buVOhcBAAA8AQAAEQAAAAAAAAAAAAAAAAC6YQAAdHJlZXMvdDAwXzAyMy5iaW5QSwECFAAUAAgICAA8TXJVLgKptAMDAADoAwAAFQAAAAAAAAAAAAAAAAAQYwAAdHJlZXMvdDAwXzAyM19hdXguYmluUEsBAhQAFAAICAgAPE1yVYtxI8MHAQAAMAEAABEAAAAAAAAAAAAAAAAAVmYAAHRyZWVzL3QwMF8wMjQuYmluUEsBAhQAFAAICAgAPE1yVeipNh70AgAAwAMAABUAAAAAAAAAAAAAAAAAnGcAAHRyZWVzL3QwMF8wMjRfYXV4LmJpblBLAQIUABQACAgIADxNclXVIDABQwEAAG4BAAARAAAAAAAAAAAAAAAAANNqAAB0cmVlcy90MDBfMDI1LmJpblBLAQIUABQACAgIADxNclUhMEkqhwMAAIgEAAAVAAAAAAAAAAAAAAAAAFVsAAB0cmVlcy90MDBfMDI1X2F1eC5iaW5QSwECFAAUAAgICAA8TXJVELF0ki8BAABVAQAAEQAAAAAAAAAAAAAAAAAfcAAAdHJlZXMvdDAwXzAyNi5iaW5QSwECFAAUAAgICAA8TXJVHvov5EMDAAA4BAAAFQAAAAAAAAAAAAAAAACNcQAAdHJlZXMvdDAwXzAyNl9hdXguYmluUEsBAhQAFAAICAgAPE1yVV+PRX4zAQAAVQEAABEAAAAAAAAAAAAAAAAAE3UAAHRyZWVzL3QwMF8wMjcuYmluUEsBAhQAFAAICAgAPE1yVbo3g8lIAwAAOAQAABUAAAAAAAAAAAAAAAAAhXYAAHRyZWVzL3QwMF8wMjdfYXV4LmJpblBLAQIUABQACAgIADxNclV57gPwMQEAAFUBAAARAAAAAAAAAAAAAAAAABB6AAB0cmVlcy90MDBfMDI4LmJpblBLAQIUABQACAgIADxNclV6ribwQgMAADgEAAAVAAAAAAAAAAAAAAAAAIB7AAB0cmVlcy90MDBfMDI4X2F1eC5iaW5QSwECFAAUAAgICAA8TXJV3zT5ry0BAABhAQAAEQAAAAAAAAAAAAAAAAAFfwAAdHJlZXMvdDAwXzAyOS5iaW5QSwECFAAUAAgICAA8TXJVUpkh1VEDAABgBAAAFQAAAAAAAAAAAAAAAABxgAAAdHJlZXMvdDAwXzAyOV9hdXguYmluUEsBAhQAFAAICAgAPE1yVcC/UykLAQAALwEAABEAAAAAAAAAAAAAAAAABYQAAHRyZWVzL3QwMF8wMzAuYmluUEsBAhQAFAAICAgAPE1yVenD2HbrAgAAwAMAABUAAAAAAAAAAAAAAAAAT4UAAHRyZWVzL3QwMF8wMzBfYXV4LmJpblBLAQIUABQACAgIADxNclVhTW9+RgEAAG4BAAARAAAAAAAAAAAAAAAAAH2IAAB0cmVlcy90MDBfMDMxLmJpblBLAQIUABQACAgIADxNclXWW8CffwMAAIgEAAAVAAAAAAAAAAAAAAAAAAKKAAB0cmVlcy90MDBfMDMxX2F1eC5iaW5QSwECFAAUAAgICAA8TXJVL5D7WEQBAAB7AQAAEQAAAAAAAAAAAAAAAADEjQAAdHJlZXMvdDAwXzAzMi5iaW5QSwECFAAUAAgICAA8TXJVoC3L65MDAACwBAAAFQAAAAAAAAAAAAAAAABHjwAAdHJlZXMvdDAwXzAzMl9hdXguYmluUEsBAhQAFAAICAgAPE1yVcT2/zo/AQAAbgEAABEAAAAAAAAAAAAAAAAAHZMAAHRyZWVzL3QwMF8wMzMuYmluUEsBAhQAFAAICAgAPE1yVQg3p9B8AwAAiAQAABUAAAAAAAAAAAAAAAAAm5QAAHRyZWVzL3QwMF8wMzNfYXV4LmJpblBLAQIUABQACAgIADxNclUIZabBNgEAAGMBAAARAAAAAAAAAAAAAAAAAFqYAAB0cmVlcy90MDBfMDM0LmJpblBLAQIUABQACAgIADxNclXnDeGKTQMAAGAEAAAVAAAAAAAAAAAAAAAAAM+ZAAB0cmVlcy90MDBfMDM0X2F1eC5iaW5QSwECFAAUAAgICAA8TXJV2jBUM0MBAABuAQAAEQAAAAAAAAAAAAAAAABfnQAAdHJlZXMvdDAwXzAzNS5iaW5QSwECFAAUAAgICAA8TXJVjLA+JYIDAACIBAAAFQAAAAAAAAAAAAAAAADhngAAdHJlZXMvdDAwXzAzNV9hdXguYmluUEsBAhQAFAAICAgAPE1yVZX8964lAQAAYQEAABEAAAAAAAAAAAAAAAAApqIAAHRyZWVzL3QwMF8wMzYuYmluUEsBAhQAFAAICAgAPE1yVQiXWnFVAwAAYAQAABUAAAAAAAAAAAAAAAAACqQAAHRyZWVzL3QwMF8wMzZfYXV4LmJpblBLAQIUABQACAgIADxNclXGDetvSwEAAHoBAAARAAAAAAAAAAAAAAAAAKKnAAB0cmVlcy90MDBfMDM3LmJpblBLAQIUABQACAgIADxNclW3mgVooQMAALAEAAAVAAAAAAAAAAAAAAAAACypAAB0cmVlcy90MDBfMDM3X2F1eC5iaW5QSwECFAAUAAgICAA8TXJVWwC4d0IBAAB6AQAAEQAAAAAAAAAAAAAAAAAQrQAAdHJlZXMvdDAwXzAzOC5iaW5QSwECFAAUAAgICAA8TXJVOQsHr5wDAACwBAAAFQAAAAAAAAAAAAAAAACRrgAAdHJlZXMvdDAwXzAzOF9hdXguYmluUEsBAhQAFAAICAgAPE1yVTvBrXI7AQAAbgEAABEAAAAAAAAAAAAAAAAAcLIAAHRyZWVzL3QwMF8wMzkuYmluUEsBAhQAFAAICAgAPE1yVZzvobJ4AwAAiAQAABUAAAAAAAAAAAAAAAAA6rMAAHRyZWVzL3QwMF8wMzlfYXV4LmJpblBLAQIUABQACAgIADxNclU809yaOQEAAG8BAAARAAAAAAAAAAAAAAAAAKW3AAB0cmVlcy90MDBfMDQwLmJpblBLAQIUABQACAgIADxNclXkN7MuiwMAAIgEAAAVAAAAAAAAAAAAAAAAAB25AAB0cmVlcy90MDBfMDQwX2F1eC5iaW5QSwECFAAUAAgICAA8TXJVmls9bxkBAABKAQAAEQAAAAAAAAAAAAAAAADrvAAAdHJlZXMvdDAwXzA0MS5iaW5QSwECFAAUAAgICAA8TXJVxW+VMycDAAAQBAAAFQAAAAAAAAAAAAAAAABDvgAAdHJlZXMvdDAwXzA0MV9hdXguYmluUEsBAhQAFAAICAgAPE1yVYfDXULyAAAAFwEAABEAAAAAAAAAAAAAAAAArcEAAHRyZWVzL3QwMF8wNDIuYmluUEsBAhQAFAAICAgAPE1yVeticeqrAgAAcAMAABUAAAAAAAAAAAAAAAAA3sIAAHRyZWVzL3QwMF8wNDJfYXV4LmJpblBLAQIUABQACAgIADxNclXpBkHeGwEAAEoBAAARAAAAAAAAAAAAAAAAAMzFAAB0cmVlcy90MDBfMDQzLmJpblBLAQIUABQACAgIADxNclXnUTgmIgMAABAEAAAVAAAAAAAAAAAAAAAAACbHAAB0cmVlcy90MDBfMDQzX2F1eC5iaW5QSwECFAAUAAgICAA8TXJVt8+6IuYAAAALAQAAEQAAAAAAAAAAAAAAAACLygAAdHJlZXMvdDAwXzA0NC5iaW5QSwECFAAUAAgICAA8TXJVJun1RZ4CAABIAwAAFQAAAAAAAAAAAAAAAACwywAAdHJlZXMvdDAwXzA0NF9hdXguYmluUEsBAhQAFAAICAgAPE1yVei+CIPoAAAACwEAABEAAAAAAAAAAAAAAAAAkc4AAHRyZWVzL3QwMF8wNDUuYmluUEsBAhQAFAAICAgAPE1yVcuo1aeXAgAASAMAABUAAAAAAAAAAAAAAAAAuM8AAHRyZWVzL3QwMF8wNDVfYXV4LmJpblBLAQIUABQACAgIADxNclUl3RMPMwEAAGIBAAARAAAAAAAAAAAAAAAAAJLSAAB0cmVlcy90MDBfMDQ2LmJpblBLAQIUABQACAgIADxNclUuF1VVXwMAAGAEAAAVAAAAAAAAAAAAAAAAAATUAAB0cmVlcy90MDBfMDQ2X2F1eC5iaW5QSwECFAAUAAgICAA8TXJVPRgBgSIBAABKAQAAEQAAAAAAAAAAAAAAAACm1wAAdHJlZXMvdDAwXzA0Ny5iaW5QSwECFAAUAAgICAA8TXJV+AFgAR8DAAAQBAAAFQAAAAAAAAAAAAAAAAAH2QAAdHJlZXMvdDAwXzA0N19hdXguYmluUEsBAhQAFAAICAgAPE1yVZ+OiJE8AQAAewEAABEAAAAAAAAAAAAAAAAAadwAAHRyZWVzL3QwMF8wNDguYmluUEsBAhQAFAAICAgAPE1yVaCrhQSfAwAAsAQAABUAAAAAAAAAAAAAAAAA5N0AAHRyZWVzL3QwMF8wNDhfYXV4LmJpblBLAQIUABQACAgIADxNclWpL+unIwEAAEkBAAARAAAAAAAAAAAAAAAAAMbhAAB0cmVlcy90MDBfMDQ5LmJpblBLAQIUABQACAgIADxNclXbo93+JAMAABAEAAAVAAAAAAAAAAAAAAAAACjjAAB0cmVlcy90MDBfMDQ5X2F1eC5iaW5QSwECFAAUAAgICAA8TXJVpdgwC6wBAACsAgAACQAAAAAAAAAAAAAAAACP5gAAbW9kZWwuaW5pUEsBAhQAFAAICAgAPE1yVUhQii/cKwAAKOEAAB4AAAAAAAAAAAAAAAAAcugAAGV4cGVyaW1lbnRhbC9tb2RlbERldGFpbHMuanNvblBLAQIUABQACAgIADxNclUThcGGgQAAAKQAAAAWAAAAAAAAAAAAAAAAAJoUAQBleHBlcmltZW50YWwvUkVBRE1FLm1kUEsFBgAAAABnAGcAKxoAAF8VAQAAAA=="
  },
  "category": "Regression",
  "fields": [
    {
      "id": 0,
      "name": "length",
      "description": "",
      "type": "float8"
    },
    {
      "id": 1,
      "name": "entropy",
      "description": "",
      "type": "float8"
    },
    {
      "id": 2,
      "name": "p_vowels",
      "description": "",
      "type": "float8"
    }
  ],
  "clusters": [],
  "parentId": null,
  "hidden": false,
  "runtimeSize": 78608,
  "fileSize": 77728
}

404

Returns a message when the model name is not found in the server.

500

Returned when an error occurred internally in the server.

Anchor
path2
path2
PUT /models/{name}

Replace the data of an existing model.

Note

In order to work with Model Management you need to activate Machine Learning permissions in your role. Go to Administration → Roles → Permissions → Machine Learning and active the view and manage permissions in Models.

Learn more about roles and permissions in Role permissions.

Expand
titleRequest

Path parameters

Add the following path parameters as part of the endpoint:

Parameter

Type

Description

name required

string

Enter the name of the model you want to replace the data of.

Request body

The request JSON body must include an object with the following key-value pairs:

Parameter

Type

Description

engine

string

The engine used to train and execute the model.

fileName

string

description

string

The description of the model.

Example

Find below a request example in cURL language:

Code Block
curl -X 'PUT' \
  'https://api.stage.devo.com/mlmodelmanager/v3/models/fresh%20model' \
  -H 'accept: application/json' \
  -H 'standAloneToken: cc81f6f5c73634002183d80b1fb736ecYOUR-TOKEN' \
  -H 'Content-Type: multipart/form-data' \
  -F 'engine=H2O' \
  -F 'fileName=@Example_test (1).zip;type=application/zip' \
  -F 'description=fresh'
Expand
titleResponse

Code

Description

200

Returns a replaced model.

Code Block
{
  "id": 24,
  "name": "fresh model",
  "engine": "H2O",
  "location": "domains/self/2f3ae14a-d405-4a2e-b6c8-8693be5c85fd123456",
  "description": "fresh",
  "updateDate": 1683723908575,
  "creationDate": null,
  "domainName": null,
  "outputType": "float8",
  "image": null,
  "category": "Regression",
  "fields": [
    {
      "id": 0,
      "name": "length",
      "description": "",
      "type": "float8"
    },
    {
      "id": 1,
      "name": "entropy",
      "description": "",
      "type": "float8"
    },
    {
      "id": 2,
      "name": "p_vowels",
      "description": "",
      "type": "float8"
    }
  ],
  "clusters": [],
  "parentId": null,
  "hidden": false,
  "runtimeSize": 78608,
  "fileSize": 77728
}

500

Returned when an error occurred internally in the server.

Anchor
path3
path3
POST /models/{name}

Create a model.

Note

In order to work with Model Management you need to activate Machine Learning permissions in your role. Go to Administration → Roles → Permissions → Machine Learning and activate the view and manage permissions in Models.

Learn more about roles and permissions in Role permissions.

Expand
titleRequest

Path parameters

Add the following path parameters as part of the endpoint:

Parameter

Type

Description

name required

string

Enter the name of the model you want to create.

Request body

The request JSON body must include an object with the following key-value pairs:

Parameter

Type

Description

engine

string

The engine used to train and execute the model.

fileName

string

description

string

The description of the model.

Example

Find below a request example in cURL language:

Code Block
curl -X 'POST' \
  'https://api.stage.devo.com/mlmodelmanager/v3/models/fresh%20model' \
  -H 'accept: application/json' \
  -H 'standAloneToken: cc81f6f5c73634002183d80b1fb736ecYOUR-TOKEN' \
  -H 'Content-Type: multipart/form-data' \
  -F 'engine=H2O' \
  -F 'fileName=@Example_test (1).zip;type=application/zip' \
  -F 'description=fresh'
Expand
titleResponse

Code

Description

200

Model has been successfully saved to the server.

Code Block
{
  "id": 24,
  "name": "fresh model",
  "engine": "H2O",
  "location": "domains/self/84c212b7-879a-406e-90c2-d704942843e4123456",
  "description": "fresh",
  "updateDate": 1683723624663,
  "creationDate": 1683723624663,
  "domainName": null,
  "outputType": "float8",
  "image": null,
  "category": "Regression",
  "fields": [
    {
      "id": 0,
      "name": "length",
      "description": "",
      "type": "float8"
    },
    {
      "id": 1,
      "name": "entropy",
      "description": "",
      "type": "float8"
    },
    {
      "id": 2,
      "name": "p_vowels",
      "description": "",
      "type": "float8"
    }
  ],
  "clusters": [],
  "parentId": null,
  "hidden": false,
  "runtimeSize": 78608,
  "fileSize": 77728
}

409

The model already exists.

500

Returned when an error occurred internally in the server.

Anchor
path4
path4
DELETE/models/{name}

Delete a model.

Note

In order to work with Model Management you need to activate Machine Learning permissions in your role. Go to Administration → Roles → Permissions → Machine Learning and activate the view and manage permissions in Models.

Learn more about roles and permissions in Role permissions.

Expand
titleRequest

Path parameters

Add the following path parameters as part of the endpoint:

Parameter

Type

Description

name required

string

Enter the name of the model you want to delete.

Example

Find below a request example in cURL language.

Code Block
curl -X 'DELETE' \
  'https://api.stage.devo.com/mlmodelmanager/v3/models/a%20new%20model' \
  -H 'accept: */*' \
  -H 'standAloneToken: cc81f6f5c73634002183d80b1fb736ecYOUR-TOKEN'
Expand
titleResponse

Code

Description

200

Model successfully deleted.

404

Model not found.

500

Returned when an error occurred internally in the server.

Anchor
path5
path5
PATCH/models/{name}

Update an existing model.

Note

In order to work with Model Management you need to activate Machine Learning permissions in your role. Go to Administration → Roles → Permissions → Machine Learning and activate the view and manage permissions in Models.

Learn more about roles and permissions in Role permissions.

Expand
titleRequest

Path parameters

Add the following path parameters as part of the endpoint:

Parameter

Type

Description

name required

string

Enter the name of the model you want to update.

Request body

The request JSON body must include an object with the following key-value pairs:

Code

Description

200

Returns the patched model.

Parameter

Type

Description

name

string

The name of the model.

engine

string

The engine used to train and execute the model.

location

string

The storage location of the model.

description

string

The description of the model.

updateDate

integer

The last time the model was modified.

creationDate

integer

domainName

string

outputType

string

image

category

string

runtimeSize

integer

fileSize

integer

Example

Find below a request example in cURL language.

Code Block Expand
titleResponse

integer

The time when the model was created.

domainName

string

The name of the domain where this model belongs.

outputType

string

The type of the output value generated by this model as a prediction.

image

string($byte)

The binary image or file with an actual trained model.

category

string

The type of model.

runtimeSize

integer

The size of the model while running in bytes.

fileSize

integer

The size of the model file in bytes.

Example

Find below a request example in cURL language.

Code Block
curl -X 'PATCH' \
  'https://api.stage.devo.com/mlmodelmanager/v3/models/fresh%20model' \
  -H 'accept: application/json' \
  -H 'standAloneToken: YOUR-TOKEN' \
  -H 'Content-Type: application/json' \
  -d '{
  "name": "fresh model",
  "engine": "H2O",
  "location": "string",
  "description": "fresh",
  "updateDate": 0,
  "creationDate": 0,
  "domainName": "self",
  "outputType": "float8",
  "image": {
    "image": "float8"
  },
  "category": "Regression",
  "fields": [
    {
      "id": 0,
      "name": "fresh model",
      "description": "fresh",
      "type": "float8"
    }
  ],
  "clusters": [
    {
      "id": 0,
      "name": "string",
      "description": "string",
      "centroid": [
        0
      ]
    }
  ],
  "runtimeSize": 78.6,
  "fileSize": 0
}'
Expand
titleResponse

Code

Description

200

Returns the patched model.

Code Block
{
  "id": 24,
  "name": "fresh model",
  "engine": "H2O",
  "location": "domains/self/123456",
  "description": "fresh",
  "updateDate": 1683725008565,
  "creationDate": 1683723625000,
  "domainName": null,
  "outputType": "float8",
  "image": null,
  "category": "Regression",
  "fields": [
    {
      "id": 0,
      "name": "fresh model",
      "description": "fresh",
      "type": "float8"
    },
    {
      "id": 1,
      "name": "entropy",
      "description": "",
      "type": "float8"
    },
    {
      "id": 2,
      "name": "p_vowels",
      "description": "",
      "type": "float8"
    }
  ],
  "clusters": [],
  "parentId": null,
  "hidden": false,
  "runtimeSize": 78,
  "fileSize": 77728
}

400

Returns a message when the model name is not found in the server or the received patch JSON is incorrect.

500

Returned when an error occurred internally in the server.

Anchor
path6
path6
GET/models/{name}

List the available models in the current domain.

Note

In order to work with Model Management you need to activate Machine Learning permissions in your role. Go to Administration → Roles → Permissions → Machine Learning and activate the view and manage permissions in Models.

Learn more about roles and permissions in Role permissions.

Expand
titleRequest

Path parameters

There are no path parameters for this request.

Example

Find below a request example in cURL language.

Code Block
curl -X 'GET' \
  'https://api.stage.devo.com/mlmodelmanager/v3/models' \
  -H 'accept: application/json' \
  -H 'standAloneToken: cc81f6f5c73634002183d80b1fb736ecYOUR-TOKEN'
Expand
titleResponse

Code

Description

200

Successful response.

Code Block
[
  {
    "id": 24,
    "name": "fresh model",
    "engine": "H2O",
    "location": "domains/self/2f3ae14a-d405-4a2e-b6c8-8693be5c85fd123456",
    "description": "fresh",
    "updateDate": 1683723909000,
    "creationDate": 1683723625000,
    "domainName": "self",
    "outputType": "float8",
    "image": null,
    "category": "Regression",
    "fields": [
      {
        "id": 0,
        "name": "length",
        "description": "",
        "type": "float8"
      },
      {
        "id": 1,
        "name": "entropy",
        "description": "",
        "type": "float8"
      },
      {
        "id": 2,
        "name": "p_vowels",
        "description": "",
        "type": "float8"
      }
    ],
    "clusters": [],
    "parentId": null,
    "hidden": false,
    "runtimeSize": 78608,
    "fileSize": 77728
  },
  {
    "id": 21,
    "name": "dga_classifier_onnx_demoTEST1",
    "engine": "ONNX",
    "location": "domains/self/823b3522-895c-411e-a4f3-2762db27a6fc/self/123456",
    "description": null,
    "updateDate": 1681900499000,
    "creationDate": 1681900499000,
    "domainName": "self",
    "outputType": "array(float4)",
    "image": null,
    "category": "ONNX",
    "fields": [
      {
        "id": 0,
        "name": "field_0",
        "description": "",
        "type": "array(float4)"
      }
    ],
    "clusters": [],
    "parentId": null,
    "hidden": false,
    "runtimeSize": 880,
    "fileSize": 3881
  },
  {
    "id": 20,
    "name": "graeme_test2Test2",
    "engine": "ONNX",
    "location": "domains/self/b96fe0d9-74f2-4f51-a301-ff7573c0f6bd123456",
    "description": null,
    "updateDate": 1681804104000,
    "creationDate": 1681804104000,
    "domainName": "self",
    "outputType": "array(float4)",
    "image": null,
    "category": "ONNX",
    "fields": [
      {
        "id": 0,
        "name": "field_0",
        "description": "",
        "type": "array(float4)"
      }
    ],
    "clusters": [],
    "parentId": null,
    "hidden": false,
    "runtimeSize": 876,
    "fileSize": 229468
  },
  {
    "id": 19,
    "name": "graeme_testTEST3",
    "engine": "ONNX",
    "location": "domains/self/82178f93-af1b-4d1b-9438-67b842a6bee8123456",
    "description": null,
    "updateDate": 1681738747000,
    "creationDate": 1681738724000,
    "domainName": "self",
    "outputType": "array(float4)",
    "image": null,
    "category": "ONNX",
    "fields": [
      {
        "id": 0,
        "name": "field_0",
        "description": "",
        "type": "array(float4)"
      }
    ],
    "clusters": [],
    "parentId": null,
    "hidden": false,
    "runtimeSize": 876,
    "fileSize": 229468
  },
  {
    "id": 17,
    "name": "dga_scoringTEST4",
    "engine": "ONNX",
    "location": "domains/self/85132b1f-59fa-4859-9198-e6ce49258916123456",
    "description": "DGA domain label scoring",
    "updateDate": 1678361980000,
    "creationDate": 1678361980000,
    "domainName": "self",
    "outputType": "array(float4)",
    "image": null,
    "category": "ONNX",
    "fields": [
      {
        "id": 0,
        "name": "field_0",
        "description": "",
        "type": "array(float4)"
      }
    ],
    "clusters": [],
    "parentId": null,
    "hidden": false,
    "runtimeSize": 892,
    "fileSize": null
  },
  {
    "id": 16,
    "name": "pokemon_onnxTEST7",
    "engine": "ONNX",
    "location": "domains/self/dd374598-af8e-4542-8663-e7e8e0cdbf38123456",
    "description": "this is the description",
    "updateDate": 1678201475000,
    "creationDate": 1678201449000,
    "domainName": "self",
    "outputType": "array(float4)",
    "image": null,
    "category": "ONNX",
    "fields": [
      {
        "id": 0,
        "name": "field_0",
        "description": "",
        "type": "array(float4)"
      }
    ],
    "clusters": [],
    "parentId": null,
    "hidden": false,
    "runtimeSize": 876,
    "fileSize": 229468
  },
  {
    "id": 4,
    "name": "gptestTEST8",
    "engine": "ONNX",
    "location": "domains/self/126e92c2-d724-40cf-a6cf-3dc9f63e9219123456",
    "description": "",
    "updateDate": 1676390228000,
    "creationDate": 1676390228000,
    "domainName": "self",
    "outputType": "array(float4)",
    "image": null,
    "category": "ONNX",
    "fields": [
      {
        "id": 0,
        "name": "field_0",
        "description": "",
        "type": "array(float4)"
      }
    ],
    "clusters": [],
    "parentId": null,
    "hidden": false,
    "runtimeSize": 876,
    "fileSize": 229468
  },
  {
    "id": 2,
    "name": "RRCFTEST9",
    "engine": "IDA",
    "location": "domains/self/f868583b-011d-48ea-970c-eb059f06b951123456",
    "description": "Testing RRCF in FlowTEST",
    "updateDate": 1676291578000,
    "creationDate": 1676291578000,
    "domainName": "self",
    "outputType": "float8",
    "image": null,
    "category": "Rrcf",
    "fields": [
      {
        "id": 0,
        "name": "dimension_0",
        "description": "",
        "type": "float8"
      }
    ],
    "clusters": [],
    "parentId": null,
    "hidden": false,
    "runtimeSize": 23764,
    "fileSize": 227
  }
]

500

Returned when an error occurred internally in the server.

Anchor
path7
path7
GET/images/{name}

Get the binary image of a model.

Note

In order to work with Model Management you need to activate Machine Learning permissions in your role. Go to Administration → Roles → Permissions → Machine Learning and activate the view and manage permissions in Models.

Learn more about roles and permissions in Role permissions.

Expand
titleRequest

Path parameters

Add the following path parameters as part of the endpoint:

Parameter

Type

Description

name required

string

Enter the name of the model you want to get the binary image of.

Example

Find below a request example in cURL language.

Code Block
curl -X 'GET' \
  'https://api.stage.devo.com/mlmodelmanager/v3/images/RRCF' \
  -H 'accept: */*' \
  -H 'standAloneToken: cc81f6f5c73634002183d80b1fb736ecYOUR-TOKEN'

Expand
titleResponse

Code

Description

200

Returns the model file as an octet stream.

Code Block
{
  "metadata": {
    "id": 123456,
    "name": "human_usable_saved_nameTEST1",
    "algorithm": "rrcf",
    "version": "1.0"
  },
  "data": {
    "dimensions": 1,
    "shingle": 10,
    "treeSize": 256,
    "trees": 20
  }
}

404

Model not found.

500

Returned when an error occurred internally in the server