Example
Find below a request example in cURL language. In this case, we are updating an aggregation task with ID cc_myDomain:abcDE123
in the domain called myDomain
. Learn how to authorize your request in this article.
Code Block |
---|
curl --location --request PUT 'https://api-us.devo.com/aggregations/v2/aggrtasks/myDomain/cc_myDomain:abcDE123' --header 'standAloneToken:YOUR_TOKEN' --header 'Content-Type: application/json' --data '{
"description": "Aggregation task updated",
"minGrain": "5m",
"query": {
"timeZone": "Europe/Madrid",
"locale": "es",
"linq": "from siem.logtrust.web.activity group every 10m by username every 5m select avg(responseTime) as responseTime"
}
}' |
...
...
Code
...
Description
...
200
...
Aggregation task successfully updated.
Code Block |
---|
{
"id": "cc_myDomain:abcDE123",
"name": "MyNewAggTask",
"table": "siem.logtrust.web.activity",
"wheres": [
"eq(client, \"myDomain\")"
],
"delay": 0,
"query": {
"linq": "from siem.logtrust.web.activity where eq(client, \"integrations_factory\") group every 60000 by username, client select sumf(responseTime) as responseTime_sumf",
"timeZone": "Europe/Madrid",
"locale": "es"
},
"description": "Aggregation task updated",
"domainName": "myDomain",
"ownerEmail": "john.smith@devo.com",
"creationDate": 1677087818714,
"updateDate": 1677087818714,
"status": "PENDING_CREATE",
"statusData": null,
"fromDate": 0
} |
...
400
...
Error in request
...
401
...
Unauthorized error.
...
403
...
Forbidden request.
...
404
...
Not found.
...
405
...
Method not allowed.
...
500
...
Server error and Java exception.
...
Stop an aggregation task.
Note |
---|
In order to work with Model Management you need to activate Machine Learning permissions in your role. Go to Administration → Roles → Permissions → Machine Learning and activate the view and manage permissions in Models. Learn more about roles and permissions in Role permissions. |
...
Path parameters
Add the following path parameters as part of the endpoint:
...
Parameter
...
Type
...
Description
...
domain
required
...
string
...
Enter the domain of the aggregation task that you want to stop.
...
aggrId
required
...
string
...
Enter the ID of the aggregation task that you want to stop.
Note |
---|
How can I get the ID of an aggregation task? To get the ID of an aggregation task, log in to the Devo platform and go to Administration → Data management, locate your aggregation task in the table, click the ellipsis button in its row and select View details. You can copy the internal ID in the details shown in the window that appears. Learn more about this in Aggregation tasks. |
Example
Find below a request example in cURL language. In this case, we want to stop the aggregation task with ID cc_myDomain:abcDE123
in the domain called myDomain
. Learn how to authorize your request in this article.
Code Block |
---|
curl -H "standAloneToken:YOUR_TOKEN" -X PUT "https://api-us.devo.com/aggregations/v2/aggrtasks/myDomain/cc_myDomain:abcDE123/stop" |
...
...
Code
...
Description
...
200
...
Aggregation task stopped.
...
400
...
Error in request
...
401
...
Unauthorized error.
...
403
...
Forbidden request.
...
404
...
Not found.
...
405
...
Method not allowed.
...
500
...
Table of Contents |
---|
minLevel | 2 |
---|
maxLevel | 2 |
---|
type | flat |
---|
|
Overview
Check the list of available endpoints and methods in the Aggregation task API:
...
Endpoints and methods
...
Description
...
/models/{name}
see below...
Get detailed information about a model.
...
/models/{name}
see below...
Replace the data of an existing model.
...
/models/{name}
see below...
Create a new model.
...
/models/{name}
see below...
Delete a model.
...
/models/{name}
see below...
Update an existing model.
...
/models/{name}
see below...
List the available models in the current domain.
...
/images/{name}
see below...
Get the binary image of a model.
Endpoints and methods
...
Get information about all the aggregation tasks in a domain.
Note |
---|
In order to work with Model Management you need to activate Machine Learning permissions in your role. Go to Administration → Roles → Permissions → Machine Learning and activate the view and manage permissions in Models. Learn more about roles and permissions in Role permissions. |
...
Path parameters
Add the following path parameters as part of the endpoint:
...
Parameter
...
Type
...
Description
...
domain
required
...
string
...
Enter the domain of the aggregation tasks you want to get information about.
Query string parameters
Query string parameters are optionally added after the path parameters, preceded by a question mark (?
) and separated by an ampersand (&
)
...
Parameter
...
Type
...
Description
...
skipCache
...
boolean
...
If it is true
, skips the cache that contains the status of the aggregation tasks and force the system to tell you where to find them.
Default value is false
.
...
status
...
string
...
Execution status of the aggregation tasks. Available values are:
RUNNING
STOPPED
DELETED
ERROR
PARTIAL_STOPPED
PENDING_CREATE
PENDING_START
PENDING_STOP
PENDING_UPDATE
PENDING_REBUILD
PENDING_DELETE
PENDING_RESUME
PENDING_EXTEND
...
id
...
string
...
If you want to get details about a specific aggregation task only, enter its ID here.
Note |
---|
How can I get the ID of an aggregation task? To get the ID of an aggregation task, log in to the Devo platform and go to Administration → Data management, locate your aggregation task in the table, click the ellipsis button in its row and select View details. You can copy the internal ID in the details shown in the window that appears. Learn more about this in Aggregation tasks. |
...
fromDate
...
integer
...
Timestamp from when the aggregation tasks to be returned were created. Format is a timestamp in milliseconds, for example 1652400000000
...
name
...
string
...
If you want to get details about a specific aggregation task only, you can enter its name.
...
ownerEmail
...
string
...
Email of the aggregation tasks' owner.
...
negated
...
boolean
...
Set this to true
to negate all other parameters. Default value is false
.
Example
Find below a request example in cURL language. In this case, we are requesting all the aggregation tasks with status STOPPED
created in the given domain. Learn how to authorize your request in this article.
Code Block |
---|
curl -H "standAloneToken:YOUR_TOKEN" -X GET "https://api-us.devo.com/aggregations/v2/aggrtasks/myDomain?status=STOPPED" |
...
...
Code
...
Description
...
200
...
Successful response. List of aggregation tasks retrieved.
Code Block |
---|
[
{
"id": "cc_myDomain:nQEbd480",
"name": "test1",
"delay": 0,
"domainName": "myDomain",
"ownerEmail": "john.smith@devo.com",
"jobs": [
{
"grain": "1m",
"status": "STOPPED",
"from": 1652400000000,
"to": 1652432340000
},
{
"grain": "5m",
"status": "STOPPED",
"from": 1652400000000,
"to": 1652400000000
},
{
"grain": "1h",
"status": "STOPPED",
"from": 1652400000000,
"to": 1652400000000
}
],
"creationDate": 1652432342000,
"updateDate": 1652432342000,
"status": "STOPPED",
"statusData": "INCOMPLETE",
"fromDate": 1652400000000
},
{
"id": "cc_myDomain:oYckc691",
"name": "test2",
"delay": 0,
"domainName": "myDomain",
"ownerEmail": "john.smith@devo.com",
"jobs": [
{
"grain": "1m",
"status": "STOPPED",
"from": 1652400000000,
"to": 1652436480000
},
{
"grain": "5m",
"status": "STOPPED",
"from": 1652400000000,
"to": 1652436300000
},
{
"grain": "1h",
"status": "STOPPED",
"from": 1652400000000,
"to": 1652436000000
}
],
"creationDate": 1652436468000,
"updateDate": 1652436468000,
"status": "STOPPED",
"statusData": "INCOMPLETE",
"fromDate": 1652400000000
}
]
|
...
400
...
Error in request
...
401
...
Unauthorized error.
...
403
...
Forbidden request.
...
404
...
Not found.
...
405
...
Method not allowed.
...
500
...
Server error and Java exception.
...
Get information about a specific aggregation task in a given domain.
Note |
---|
In order to work with Model Management you need to activate Machine Learning permissions in your role. Go to Administration → Roles → Permissions → Machine Learning and active the view and manage permissions in Models. Learn more about roles and permissions in Role permissions. |
...
Path parameters
Add the following path parameters as part of the endpoint:
...
Parameter
...
Type
...
Description
...
domain
required
...
string
...
Enter the domain of the aggregation task you want to get information about.
...
aggrId
required
...
string
...
Enter the ID of the aggregation task you want to get information about.
Note |
---|
How can I get the ID of an aggregation task? To get the ID of an aggregation task, log in to the Devo platform and go to Administration → Data management, locate your aggregation task in the table, click the ellipsis button in its row and select View details. You can copy the internal ID in the details shown in the window that appears. Learn more about this in Aggregation tasks. |
Query string parameters
Query string parameters are optionally added after the path parameters, preceded by a question mark (?
) and separated by an ampersand (&
)
...
Parameter
...
Type
...
Description
...
skipCache
...
boolean
...
If it is true
, skips the cache that contains the status of the aggregation task and force the system to tell you where to find it.
Default value is false
.
Example
Find below a request example in cURL language. In this case, we are requesting details about the aggregation task with ID cc_myDomain:abcDE123
created in the domain called myDomain
. Also, we want to skip the cache about its status. Learn how to authorize your request in this article.
Code Block |
---|
curl -H "standAloneToken:YOUR_TOKEN" -X GET "https://api-us.devo.com/aggregations/v2/aggrtasks/myDomain/cc_myDomain:abcDE123?skipCache=true" |
...
...
Code
...
Description
...
200
...
Successful response. aggregation task details retrieved.
Code Block |
---|
{
"id": "cc_myDomain:abcDE123",
"name": "Test",
"table": "demo.ecommerce.data`1234`.`345`",
"wheres": [
"eq(client, \"myDomain\")"
],
"delay": 0,
"query": {
"linq": "from demo.ecommerce.data`1234`.`345` where eq(client, \"myDomain\") group every 60000 by level, type, message, client"
},
"domainName": "myDomain",
"ownerEmail": "john.smith@devo.com",
"jobs": [
{
"grain": "1m",
"status": "STOPPED",
"from": 1652400000000,
"to": 1652432040000
},
{
"grain": "5m",
"status": "STOPPED",
"from": 1652400000000,
"to": 1652400000000
},
{
"grain": "1h",
"status": "STOPPED",
"from": 1652400000000,
"to": 1652400000000
}
],
"creationDate": 1652432055000,
"updateDate": 1652432055000,
"status": "STOPPED",
"statusData": "INCOMPLETE",
"fromDate": 1652400000000
} |
...
400
...
Error in request
...
401
...
Unauthorized error.
...
403
...
Forbidden request.
...
404
...
Not found.
...
405
...
Method not allowed.
...
500
...
Server error and Java exception.
...
Get the measures of an aggregation task.
Note |
---|
In order to work with Model Management you need to activate Machine Learning permissions in your role. Go to Administration → Roles → Permissions → Machine Learning and activate the view and manage permissions in Models. Learn more about roles and permissions in Role permissions. |
...
Path parameters
Add the following path parameters as part of the endpoint:
...
Parameter
...
Type
...
Parameter
...
domain
required
...
string
...
Enter the domain of the aggregation task you want to get information about.
...
aggrId
required
...
string
...
Enter the ID of the aggregation task you want to get information about.
Note |
---|
How can I get the ID of an aggregation task? To get the ID of an aggregation task, log in to the Devo platform and go to Administration → Data management, locate your aggregation task in the table, click the ellipsis button in its row and select View details. You can copy the internal ID in the details shown in the window that appears. Learn more about this in Aggregation tasks. |
Example
Find below a request example in cURL language. In this case, we are requesting the measures of the aggregation task with ID cc_myDomain:abcDE123
created in the domain called myDomain
. Also, we want to skip the cache about its status. Learn how to authorize your request in this article.
Code Block |
---|
curl -H "standAloneToken:YOUR_TOKEN" -X GET "https://api-us.devo.com/aggregations/v2/aggrtasks/myDomain/cc_myDomain:abcDE123/measures" |
...
...
Code
...
Description
...
200
...
Successful response. In this example, the task is calculating three aggregations:
count()
avg(responseTime)
sum(responseTime)
Code Block |
---|
{
"responseTime": [
"avg",
"sum"
],
"count": []
} |
...
400
...
Error in request
...
401
...
Unauthorized error.
...
403
...
Forbidden request.
...
404
...
Not found.
...
405
...
Method not allowed.
...
500
...
Server error and Java exception.
...
Create a new aggregation task.
Note |
---|
In order to work with Model Management you need to activate Machine Learning permissions in your role. Go to Administration → Roles → Permissions → Machine Learning and activate the view and manage permissions in Models. Learn more about roles and permissions in Role permissions. |
...
Path parameters
Add the following path parameters as part of the endpoint:
...
Parameter
...
Type
...
Description
...
domain
required
...
string
...
Enter the domain where you want to create the aggregation task.
Request body
The request JSON body must include an object with the following key-value pairs:
...
Parameter
...
Type
...
Description
...
name
required
...
string
...
Aggregation task's name, which must be unique in the domain.
...
query
required
...
object
...
An object that contains three parameters:
LINQ
- Base query of the aggregation task, written in LINQ syntax.
timezone
- Timezone of the aggregation task query, in the following format: Europe/Madrid
locale
- Locale of the aggregation task query, in the following format: en
...
fromDate
required
...
string
...
Date from which the aggregation task searches to calculate the aggregated data. Valid format is dd/mm/yyyy
...
description
...
string
...
Brief description of the aggregation task.
...
delay
...
integer
...
Maximum acceptable time difference between the current time and the last event displayed. You can indicate it in seconds (1s
), minutes (1m
), hours (1h
) and days (1d
).
Default value is 0
...
minGrain
...
string
...
Minimum granularity of the aggregation task. Available values are:
AUTO
- Calculate best aggregation according to the given query.
1m
- Aggregate every minute.
5m
- Aggregate every 5 minutes.
30m
- Aggregate every 30 minutes.
Example
Find below a request example in cURL language. In this case, we are creating a new aggregation task in the domain called myDomain
. Learn how to authorize your request in this article.
Code Block |
---|
curl --location -g 'https://api-us.devo.com/aggregations/v2/aggrtasks/myDomain' --header 'standAloneToken:YOUR_TOKEN' --header 'Content-Type: application/json' --data '{
"name": "MyNewAggTask",
"description": "This is a test aggregation task",
"fromDate": "06/02/2023",
"minGrain": "30m",
"query": {
"timeZone": "Europe/Madrid",
"locale": "es",
"linq": "from siem.logtrust.web.activity group every 5m by username every 5m select avg(responseTime) as responseTime"
}
}' |
...
...
Code
...
Description
...
200
...
Successful response. Aggregation task created.
Code Block |
---|
{
"id": "cc_myDomain:abcDE123",
"name": "MyNewAggTask",
"table": "siem.logtrust.web.activity",
"wheres": [
"eq(client, \"myDomain\")"
],
"delay": 0,
"query": {
"linq": "from siem.logtrust.web.activity where eq(client, \"integrations_factory\") group every 60000 by username, client select sumf(responseTime) as responseTime_sumf",
"timeZone": "Europe/Madrid",
"locale": "es"
},
"description": "my new aggregation task",
"domainName": "myDomain",
"ownerEmail": "john.smith@devo.com",
"creationDate": 1677087818714,
"updateDate": 1677087818714,
"status": "PENDING_CREATE",
"statusData": null,
"fromDate": 0
} |
...
400
...
Error in request
...
401
...
Unauthorized error.
...
403
...
Forbidden request.
...
404
...
Not found.
...
405
...
Method not allowed.
...
500
...
Server error and Java exception.
...
Update a specific aggregation task.
Note |
---|
In order to work with Model Management you need to activate Machine Learning permissions in your role. Go to Administration → Roles → Permissions → Machine Learning and activate the view and manage permissions in Models. Learn more about roles and permissions in Role permissions. |
...
Path parameters
Add the following path parameters as part of the endpoint:
...
Parameter
...
Type
...
Description
...
domain
required
...
string
...
Enter the domain of the aggregation task that you want to update.
...
aggrId
required
...
string
...
Enter the ID of the aggregation task that you want to update.
Note |
---|
How can I get the ID of an aggregation task? To get the ID of an aggregation task, log in to the Devo platform and go to Administration → Data management, locate your aggregation task in the table, click the ellipsis button in its row and select View details. You can copy the internal ID in the details shown in the window that appears. Learn more about this in Aggregation tasks. |
Request body
The request JSON body must include an object with the following key-value pairs:
...
Parameter
...
Type
...
Description
...
query
...
object
...
An object that contains three parameters:
LINQ
- Base query of the aggregation task, written in LINQ syntax.
timezone
- Timezone of the aggregation task query, in the following format: Europe/Madrid
locale
- Locale of the aggregation task query, in the following format: en
...
description
...
string
...
Brief description of the aggregation task.
...
delay
...
integer
...
Maximum acceptable time difference between the current time and the last event displayed. You can indicate it in seconds (1s
), minutes (1m
), hours (1h
) and days (1d
).
Default value is 0
...
minGrain
...
string
...
Minimum granularity of the aggregation task. Available values are:
AUTO
- Calculate best aggregation according to the given query.
1m
- Aggregate every minute.
5m
- Aggregate every 5 minutes.
30m
- Aggregate every 30 minutes.
Table of Contents |
---|
minLevel | 2 |
---|
maxLevel | 2 |
---|
type | flat |
---|
|
Overview
Check the list of available endpoints and methods in the model management API:
Endpoints and methods | Description |
---|
/models/{name} see below | Get detailed information about a model. |
/models/{name} see below | Replace the data of an existing model. |
/models/{name} see below | Create a new model. |
/models/{name} see below | Delete a model. |
/models/{name} see below | Update an existing model. |
/models/{name} see below | List the available models in the current domain. |
/images/{name} see below | Get the binary image of a model. |
Endpoints and methods
GET /models/{name}
Get detailed information about a model.
Note |
---|
In order to work with Model Management you need to activate Machine Learning permissions in your role. Go to Administration → Roles → Permissions → Machine Learning and activate the view and manage permissions in Models. Learn more about roles and permissions in Role permissions. |
Expand |
---|
|
Path parametersAdd the following path parameters as part of the endpoint: Parameter | Type | Description |
---|
name required
| string
| Enter the name of the model you want to get information about. |
Query string parametersQuery string parameters are optionally added after the path parameters, preceded by a question mark (? ) and separated by an ampersand (& ) Parameter | Type | Description |
---|
fast
| boolean
| If it is true , it does not show the model image in details. Default value is - . |
ExampleFind below a request example in cURL language: Code Block |
---|
curl -X 'GET' \
'https://api.stage.devo.com/mlmodelmanager/v3/models/fresh%20model' \
-H 'accept: application/json' \
-H 'standAloneToken: YOUR-TOKEN' |
|
Expand |
---|
|
Code | Description |
---|
200 | Returns the retrieved model. Code Block |
---|
{
"id": 24,
"name": "fresh model",
"engine": "H2O",
"location": "domains/self/123456",
"description": "fresh",
"updateDate": 1683723909000,
"creationDate": 1683723625000,
"domainName": "self",
"outputType": "float8",
"image": {
"image": "UEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAARAAAAdHJlZXMvdDAwXzAwMC5iaW5jYGJgnbSkyy7dgIGBlYFBw/EBq+JeBiYGFvWyajtNEOPoKgs7gQ+MDKy/fCUcgnWFbOW0ym0/gFV7gFUvuZVqy8DAwMLAsMZR4AOYUeG4IFLa9uDNO3tAGp+aJoE1csaWQxV6OJoagBkWMPtYb1gfAFvD0mrv4SA0o3jP1lm7rUD8Y3rxDncnnt6T2cNsC1JoZLoJ6DCw7j0I+y6xt9ocfPMBbN8dx0wHhy97baJf50Hty3AEG52S5+ug77dpj9jFz7shGo84Xvjyc8/b9MU2AFBLBwiiWWKd0QAAAAkBAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABUAAAB0cmVlcy90MDBfMDAwX2F1eC5iaW5NkV1Ik1EYx09mNp26qRlzFsQQMT9y2TQt936dc94lDAq0iKIQw8BQahAWRY6YkRmkMLFvW7nMLpJMKC12mBl+kEYXleDHRVFGF6UXJZMu7Hlf31d64M+B8/tz/s/zHIQQMoDQ7wwXCl5w5V2a5Q6ZW1niVIjKNWN0DaAokHKq1dRL0VCi66BrjP3qMPHKle/rCNkK59r/hBaXZCRco7U/Unnh3TC3P5BJGiolEgNoPShGf9PcJ6PxBHnWY+Wv18fx4ZpOqWPWSIyA4kFGPRcJIoo8k7v7n3Pl56yQaxZOnb4r5QDJ1bwrJWI0Gicr/XV1m/iZ/sHC5v5BnAdkm5at5rZ6KArnkFJ/H3fYm8Z3W4vJxMcOIQFQIihBf27hOEUoGxvsr7k0QzOrrrYRnveL+YDsmne1v3AWUfrLvLXS37xzmd8OpEDbYbRiu13gQsntsvfvADuT0Rva2PWQ1PNeqrB1ukepsnQXan1JlTkqxCymXO3q8ZFs7b8M+hz2fIoWKL3Z5A/Zv5xnTYMWIrwYxiZltSCT/l5ggKBwkBh5Czt28USpzXYF+6z38A5ADs2rlpnCvJViRX0D850Mcm0xQ7huukgoBFSk9aj+7+gc7K9Yrr285Jx6f4RZ/HMEf/hEYgHFgWL1/sITFAl7SJW7xfntQDwfdX+cREfsUhKgZFCSnmsJUhToIsNlmVzE385ykx+Qxumf0k5AxZpXG0RCgoPs89RxaeWpsOd2MfVto1ii7EfLVnPPvqHI8ITO7E1ni4/bmHu+hVzFyzgF0AZQyur/lsO8hfTV56Osp+pGKOD+gycdm8luQKWaV63II/DZcFTJHfZddHNbnk7iEc8myQmIA/0DUEsHCK74UgyGAgAASAMAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAEQAAAHRyZWVzL3QwMF8wMDEuYmluY2BiYJ20pMsu3YCBgZWBQcNxw2uBvQxMDCxvjmTZaYIYc0Ms7AQ+MDKw/vKVcDDqZ7bdUhRn+wGsOgCsevf9CFsGBgYWBoYljgIfwIwKx8s54rZC367vAWl8aprk4PlcyfakSgJUoYejqQGYYQGzj/WG9QGwNSyt9h4O/DbRe75fX2EF4rMdCnHY37N3z/c4oT0ghasa5wMdBpT4sjPBAW7fg2IfG8PXrHsh/DWOTFeu2XC2htuCFC67VABT2OLIsjx1j24O816ID/Y4fvvaYG32zd8WAFBLBwgBG+x01gAAAAkBAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABUAAAB0cmVlcy90MDBfMDAxX2F1eC5iaW5Nkl1Ik2EUx8/8nG5utvkRWRdJSCtLU6tZ7v16nmdTiqI0sMAUIejCQUwjvJDUQmYmLAhB1DQa2UVWapkf7EWLXJB9EATDJENKqov0Ik1vXOfd3kkH/jzw/v6c/3nO+wAAaFHwZ5cDvA0O6byfO/WgSb7c3scq9BNMgygKpZyhcg8yeGlwdGc9k4skDa98WgQfteAZ/Z8g7rsdYIGZXmj50tFXnNk5QuajrtI4RPEKjvRMHrZDwM/MoOPfjwI/nXlPGu5uJXpESSh9JBcEEdaG7BsuLzcYr+ODQaNQX9cj7UWSrXrDJRL4MMV6cL5PbfGh+WZyNWQfnvvV7FCuMMIAHtMyyxAX3anjO966aHGgSzAgMqIMm/2eoK+YaIt93Mx6i1zKnaNfs++LOUhyVW+4PCJMPqQZd99wG2l6fqlhh1DhB+EAkjx1hzGKrSvPAaYOe3l1v3zH2esz3O6h2+dcTGGxEY9SJRkO8IwzZc9BZ7o84HRbLyY30z2IElSF7pGbw2CZMdl/3bc2WC2vzKdToWSaJCPaoqw30q9vjMKkl96ITZBXkkqLMjNbSfO2XpKPqED1hsuK960kv5dq5KerIz7frwESVZgnHURySJ0x9H/dnQyqKu0/bhZwZLdFnk26ReGRkSUi0qESI/NVnUbfFP3Y/txWPjvOXZo4SWcs9cSEyIwybeZKmHuNBDxB28aFfvnMVpG6fprFw8pEqjf8DGooNKbRJtrCZQ3H8aby42Sxt1MsRHREzQ7v5Sy+v2lyrM0qf7kyxn1+HcO0qXVSCqJUVEqkn95iB4/Aqt1G2erwynzZMg2If6WjiIpUb7hWJWh0k9r8nbaFdQ0/V/tNPPGuQrQh4VD/AFBLBwheglh6igIAAEgDAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABEAAAB0cmVlcy90MDBfMDAyLmJpbmNgYmCdtKTLLt2AgYGVgUHDcUcu014GJgYW9bJqO00Q4+gqCzuBD0CGxBkNu1dPPGxVVjrZfgCr9gCrZlxlZcvAyMC6b16wg8AHIIP5uJMDq6mLDUPGNRugQhYGhhWOoXf5befdcwcpZKks8XbQMABLGIBNgNhtAWYDbWLt0Vtnt+e31J5/aTv2gJzQarET6BawhjWOAhAjKxwjdv+x9nr2bw/IymMXUh0+N263nBpuacsAlRf4gGSs3THjPRCNexxtXNj2LprSbA0AUEsHCM9CmrbLAAAA/AAAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAFQAAAHRyZWVzL3QwMF8wMDJfYXV4LmJpbj2RXUgUURTHj/m568f6tWlBEmlmamXttqbb3taZe2dDi6REinoQTTHJ6sEEpXDLMLEyK3upzKVNoo0yWUSN5mIUZCj6kPVgFj5ZRpphG5gLdnac7Q9/DtzfmfO/cy4AQBgafqfY4OF52+lTbpJZeoLPOZrZ0kA3C0C0Cu2ripp7GLyOsqVqnLza9Y04p/qy31S56SZEQaoDfX1/FiWwtjIWskCMnzrJ54I4mmjNoaFqXqh/ZrRbgpFIqdjwl1yeniK1Mw+ExlmPGIEoEh3hz/V2SOBIYxuTlsjJQwvkR4xOaLhqFNIRZai9K8oTYUgr+e53sWiGKJ8elMVMrFvUbCW3MJBB1hrmOltGjpa/JcO1X8THhktiFCIdOso/zh5LoUSmkuCxQEAT6ZkMF21Su7gV0Ta1V9HgJAVrBnWNuwn7uEg8e86Jun1maxai7eoOlb3IJhuMXpO63t/m+4vr5Zvp3TQ5+hgLRhSCDvbPawEbjBxW/mMdVHPfUfvPLpqGVaNa0fwdBkXhSl9/nZmnzmtNA877dDOiGNWKzhgYzL9krhevZG6v4E0BMTTYm0x3IDKo2cr9KhMlMAZKq5crLd9/5XNu1DB90AWqRRSO1vr3VxOG79tA3XLj7ntjY6TQ7qH5Q/1CLKI4dOz/95hm4HhCEzwdlrkDndz7fIImJa4XjEh2qr0rGhdg8DitKS031z/9SsImBvJyNXsFE5JsNVvJLellEL2B1bWu5bccd3l6VRl1LDuEeER6dLx/nPU6hbYbzLeX0b4puaX3iqmg4gjdhShH7VXUlsAA0sSCD4/4cF2KZejds7zZRr2Qi8iM/gdQSwcIbyWEEHECAAAgAwAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAARAAAAdHJlZXMvdDAwXzAwMy5iaW5jYGJgnbSkyy7dgIGBlYFBw7Hu6Ks9DEwMLG+OZNlpMjAysO6bF+wg8AEo8nKRud1yESPbhBX3bT6AVc9xNG80sr1ja2YLUth9OQyokIGBhYGhxfFq83Gbk96qeyH8FY7yFzlslZ2ACsF8D0c/CMPCUcaAkYHF+ayfA8hioDWsphuW25VNY90LdQjrDesDdgIfgIpa7T0cRC6Y7llQftoSxD+mF+/QuHTqHmOJvzYghUamm8AuZvE9lgFzSIajl2yyjYq83B6Ii/c49q/YaNPx0QDqkAxHsNGuRwMdrswq23OVWXo3iF+7t9xhC8v2Pf2bdW0BUEsHCJ3HW5r0AAAAIgEAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAFQAAAHRyZWVzL3QwMF8wMDNfYXV4LmJpbk2Se0jTURTHr+/3qs0UdeLKaBb4yFeztbvHvXczKCQrwSjZH2KFkpGFGiWGEUpaaRDmIE2mgZpgUmi2X9O0tJihFSSm+SgxtAiLFMno/H7+Bh34cuF+vpxzzzkXIYS8QejXNhOyXjKtXbyHr/ulc8GuuaxG18xcALmC+FOI8g6GnktM+T01XEzOCOavxlvaaDScbv8JeX4xIjTD3F5M4ExNPU4dtBDzm/PUE5AXj505V5YZ8r5vzPs6il2Gp7E9KoM0uncb/AEFgPyddVfeMYQq6cidSaweuoYPtOQZHr91IbGA4kSvEB8kRqTSGq9s+YQPOWbx6ckOQ/hcqm4XoHixtlC39CBDpWeZY7wAuxY/w1alnHZ2NRIJoA0giTOfPQ3qTulfZxfjnrvD3H6vELowY9YmAEoUvULEhTHU0E5zPFpx2+gsHuuxkL4krEsClCzOkO8ZWeJNSHrbWBZcztVWFtkqoqqp46iZuQPyALmLXrQvzIRuPmEZ8lvc/NSqrVNSo93xsoTyu/Jx7oyPeZkJKRYpv49HD+u49CalSl6VqI0BtEnUeh8pFOluUNmfZo73fich/LPQbpBKzCnMJS6WoR+M/T58yrbzvYpz5AbRiKwBIgUkA0md+Rq6KbJbaQidtZUfKVFHbq0gZaH1JAXQHtErxEYG8zPrpyVqThF7Fyfo+0jeeLJODWiv2LPwXwbnGLKrjPm9Q5qFn5FcaYuDFvo4qC8gP5Cv831nbAyZm2jqZ61m0dqKIxzt9FitnAQC2gwKdNZFJxiakrG0pQD8rXnAZl4z05OZI0QDBIve9bkEUtgQ7ZRm4YXoCbzdsmqoi7is1wLSibWFukX98E8fsN7aGdtS4XGu+mMVvWBcJEGAgkFBznxdV6HfZTqgCOVe9fc+/atUUl/1JNEDMoheIRSt4DtnmB7I5goUY7g7fIIUjDXoCCB4EPoHUEsHCArATw/MAgAAmAMAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAEQAAAHRyZWVzL3QwMF8wMDQuYmluY2BiYJ20pMsu3YCBgZWBQcMxwvvyHgYmBhb1smo7TRDj6CoLO4EPjAysv3wlHHJzF9pwGirZfgCr9nDc9Jth70l5CVsGoPy+ecEOYIXptvoOzv/69nAazbD5ADR/o3CT3fGdR2yY7wmCFLJUlng7aADtY2FgMADbB7HbAsz+ABavcJw2LXqP0+nPYLe0WuwEugWos8E4A2gFVEVA4kZrj2dH90DcssXxJU+NDec2GVsGqLzAByRjzc259gDdxvK1r8hB7syNPZweV2wAUEsHCDbB5vbMAAAA/AAAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAFQAAAHRyZWVzL3QwMF8wMDRfYXV4LmJpbk2RbUiTURTHj06XUzefJqiVhm+0tBc3m9OU3bbnufeZkamBvVMOg/JbQUkvEJs1ShKbilCWq4xpBb2HguFugSymSAQSSOCHXhDpU8gI+5KdPT6TDvw5cH9/zv9yDgBACgqixS4IXnb9ONBDTqbaecFIHes7c48lIEpExbpSHa8YTBhc2Rk+3t02TmJPf/2P6Sbsmv8Ev//I4LjJijRh0nnQS97P6OhRdwXVIlqD0sZnCm9kmNbLQy+myPDzUUL7HoqV6fNSGqJ0VFo8FxxOWHotRyK7SV1oiqwHwbG3ICCWIClVvSvllCCSKt+vHuRvTZzcPSXVBPxj0hYkW9VsJbdRw8C8jn01WIlQNkiEpjlp0XNF0iMyoPSr81pFcC/TmVA57ySEaJv2OLMbZ6RtSLar3pXvHaHgCNOqhTZydf8o6atNkL41LIlliMzqDpW9hGwu+Ngld50+y3NPSKH+R8P0g66OJSFKRiXF590AF0wfkmN7nmwReexp3/IDalLvlRL3/brDoClN8eUGNig+77UBuhl7hiqlcpYYeM/RPKLjuubbvP5WPy2uryAWROVqtvK/1hwZrBq5ILPW7nlZxE35CQx8l6gOUSpKF9/fAsgA45RlzdX8JH4y8GmOXnxCJQHR2thZ47neWQaOIRocO2b/0nyeV7dM0sR3PnEHIqvqXakSCtBAjR15pPP7BCkMGiXL8aizAolNzVZy3SMMhEI2G10MGbLaeanFTdtHe0UjokyUcfUefgrdPSy2l+Tw09DnsXzbvHSYViKqUr1KmTcygAtir+c61z7zkZSoTYzsMjt3IqpG/QNQSwcIntsW0GgCAAAgAwAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAARAAAAdHJlZXMvdDAwXzAwNS5iaW5jYGJgnbSkyy7dgIGBlYFBw9FMa98eBiYGljdHsuw0GRgZWPfNC3YQ+MDIwBI6PdDByJLL1iWzd88HsOo5jhJHBWxrmURsQQojGbzAClnVVuk7lExW2ROhVWwDVMjCwLDCse3YeZuFu0RBCllkToY7RDOAJQIcNSEMC0ewHa7pvg4gF6QGX97zAei0BQL77Xq+Xtkd9b5xD0RhBVAhUMK8f4Nd0pml1nkL7aGOaXGUu/5gT1btBbDzjUw32UGN3gPUAdWa5NNlY3i9Yw/IlRdeZDjMV1ttY9rDbwtR2IJQOLvi3s4Zu2/t+QA14QLT3j0Bqa02AFBLBwi2p+/S9QAAAC8BAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABUAAAB0cmVlcy90MDBfMDA1X2F1eC5iaW49k2tIFFEUx4/ppqOr7uaqGfRAJOi9prZbuXdnZ+7d0SgXpehD0S4VEWkP6G1km5VpaYJFaWAYLWWhlmiWbDMs+iELkijMEh9hSEGFfsiKqOzsOtOBP/Ph9+f8zz33DgBAFAq+pUngOyll9JaSydTFypctGUxKq2VhiGaggt9Qlbcy6I6Tutr3KmH1d4mB5lhuN9yi6YgiVIUHfTPHnACjTN/XRt6ZveRmY7WY0nSARqp5kVrPnz8YRN1xVl24R3qlR2ReCS9+PNEhxCKKQ8VquW8nGYYLp542kavdZiW6brHo3niRX4koQ/VO++KcYLU7t31vJ3PDO8mJrfcF8jOPz0SUpWZPn+UJBWhjLiNHhgeqSVT/DfF27xwaj8SAitf6wQMBoJXmP34hH/2VTHrm+RwbImrEVUgsqjdUOecZvG+hpsHTJHeRnzReTqKlewp5K6LV6g6DZ4b8LRKs55xDFblKleFb9vDocmab+YrqgitD6bT96VdIYEp3jox7FDc3INffctMHR0YohygaxWnnKJsjgdnH5Df7lMMVE3LdlIV/6XZRI6JZKKM236cECQKvaTfe23zTWcW8KtPCecfsaxCtVb2h8hhwz1Z2LOWcnF6Yqnyo+SxWepvFbEQ2NTuU+4RzgmcuK/CUyDpdmVK9rI82DZfxCYhMqIT//TIZ5HSyYrvL9rxiXOY/mOlofyEliOyqN1SBnRQ8PfRgWaWyPa9UmRq8Y7viO87ziBzqbkJ7mbjEoPEMq7qiJ2N/WmX/5A4aUZ5GY4IrQ8Vo8xmKGPASvba7y/bV2EyOfcqn13mdkIgoCZWo5S6wMgi4aPHIUvJbv0TJHltEG4abBbx0EFXvdFUKEMii0sQmIu5vI383lzhaUk478BEBU7NDuS+Xs+B72XloqVzQkKFMVnGU7OoQkhHNRiVr7RoSGXifiTtiLvrtD8sVf1043TokZ+FPA5LqnZ6vFiMk8axYpPiUhcRt6nOMrJst5CDKRf0DUEsHCJsl4AvvAgAAwAMAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAEQAAAHRyZWVzL3QwMF8wMDYuYmluY2BiYPWcVG2XbsDAwMrAoOH4V3X1HgYmBpZ3mRZ2miBG1g11O4EPjAysx5ukHWpcltuY67LYfmBgYGFgWOD4wfenzan3LLYMYN0ejiCFLNIt3g5ydYx7C/we7wFpBPGXtW2wWfzxrw0DUL6yxNvB1ABsggPMPtZJS6YArQELVji6CNnamEpK74Xx511w2dN/8ihYYd7tqUCHAY31tQlxANvXMC/QweNsh03etwcg+1huCmU41GuutxFjZ7AF6WiJ2gkz+ojjrgfLdp1u/2cDMzpeT2aPZNTyPQBQSwcIKlZUhdoAAAAJAQAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAAVAAAAdHJlZXMvdDAwXzAwNl9hdXguYmluPZFvSFNRGMZf3V//O+csIkOFUlqp6dKtueN27zl3BgkTLCSMIqgIpA+VVlA0JKMPapB9aBPnNBWhQmuIJe62KEEwzCQkjViQEpjoB0EUTXp3vfOBhwP393Ce97wXAECLhj1xTneo2Zl98BGp8irF2You6qp9x2IQxaIjp6SQg8HahnB35bTIAp3k+dNp09s/sfQwIqVsRSSXGhDgc5JQd6WHxE23kZ7Sbq7l+yyvkfs00Tu3OgTw57HKgl5yqsVHGvuSudcFJi4JUTI6KdoLdgfMdwjthirSZO4low0T5Q6fhjuC5KiclZS1TsFeRIem2knQ2EeWXMXcyrzDmo+oQO7eeYuDh/F4Qb/tFe9f9pLFgQVbYeUwnxIZHZ2y27vFATzken92iWpdqxj5YqwvtxXieUzO7kigMLXFXP21RD3sIwPLk9xcjZsvQlIs7zCyG0hnTpjrFzYT7WLMpTGrr2SCjr+6ylSI1GhV9Lp/mU6o3S/tWVH8JfipW2UxP3lPjYjiZUvv8L+kMK4Wbq59teVva0VPhY/fGHxMdYjS0LrdvfRTnJabObNkawx/EIeWPfxknZ6YEB2Xs5LMKwxC1+mYci24ar0lpme00nAgh5QgKpVnlP5vzTADbYNQff4kMWU3BdMOXaSbswdYAqJEdEJ0PvtvCqn32N4Gj033wk2qbw/yCXlA9ZFVoPXR3l8BCu4g7wEjUXmbxZTcNj7XoCFmRBY5u6NMBlkhGl49S35o/WRj3zd+zurjTiCxyt1Sb/8CA5NCSLyjLKvXKcXuxRGqMN6gBkQZaMNu7wwD9xL/95lrNJzeSeIsb6ioHnGUIbLJWUkXhhik5rB1y8egv7BKvMbO0WDHA44gKkf/B1BLBwiJmuPVjwIAAEgDAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABEAAAB0cmVlcy90MDBfMDA3LmJpbmNgYmD1nFRtl27AwMDKwKDhOI1j1h4GJgaWZ/Oy7DQZwIIejgIfwAwLx+xJL/fki7+w+QBUsbg7zO655Hub6g23bBgYGVg+FCY4CIAkjNbn2XGXr7eJvKC09wMjA+vpeekOrrsv2iwT+AZWWFni7WAKtI+FgcEBZh/rpCVT7EDWAAUrHLm0tGzWT+PeC+NrKBnuMWHaBFaYd3sq0GFAY31tQoD2Ac1rmBfo4G9XZpNcfmoPxKERjloybjYvr5+wAeloidoJM3qL45JH+3d1VJ2wgRmtPIFnz+O50/YAAFBLBwg2N0NU3gAAAAkBAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABUAAAB0cmVlcy90MDBfMDA3X2F1eC5iaW5Nk3tIFFEUxm9p66NVN12TTEH9Zyu3NFNbXfe6O/feWSslKYnAR4KEGpZmGOGLRUVKMtlepCFUEi0RiuZSijNukCKGVNofUlRCGlS4PSCtROrMOAMd+Lgwv4/znfsYhBDyB6GIALvDc9HeE1KDi/q8QnlkO33h7mfrAK0HSatcHhtDS7/5kTar+GO4A0ufhM+rZAesPv8JaRZ45DCwiCknXjFU44nsVpLWVE40gPwkrPb8Vs9Q2RjvM9qEj6VexVkrs1yfNopoAQWBtGoushPkqGLNK07xbrATzwQ6M0ffmzgjkJ2KV66qAR55Ilhi1TWc03semyaLuNt/xrhdgBKUbDk3ZoKiuVYae+Mgjn18GTefziKmrHlbMKAQULDar/gphSFtz/PycWXLM7HLmE4qcnKtiYB2K961chHkSaPa8GZcNtmJfw1P2vz2JViTgOxRztBXsumZHb128XWzRlG4128O+jJODVwJk9gG1SPVarQdFUTJ5+yuHRbKb5aavPUCjQcUoEjex60HFE1o+LLlEUve9SWh5lw3eVfSQXWANoF0ar8YF+xDx7UPvrLk1/eKbm8nmakIw8mAUhSvXKavDHmq6cCJt8KTpiJRv/kS3e+Ow6mA9iozyvd79BFD/mf5pIwUHH+nUvANK6QeYzQLBLQRFKjOZ/1Aka6BNUa3WQ53leILn+6Tnyf/klBAYaBQNXfuIUUOgXz/uAWbwxvEEMMVsqj3wyZAaYp37f1FUlR8hKX0LFvmg+rwgUPTXNzUOEkHZFay5VzXAkPJPnzLGa9ZM7QoGF4OUW5bNdUDCpeuQe1nnWbIupVmv6kc2d5Zi4uP99LcxjwuA5BF8a69AzdDujhmHOwTCliGeIoVUqG7hZN+gEzQP1BLBwh/Mtz0mQIAAEgDAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABEAAAB0cmVlcy90MDBfMDA4LmJpbmNgYmD1nFRtl27AwMDKwKDhGLKwaw8DEwPLs3lZdpoMYEEPR4EPYIaF40+zS3uePrxg8wGoYnF3mN0rg+s2HJeO2DAwMrCqG7o6CHwAMpYZ6zgsf3Vj91lRNxugRhYGhhmO19essPm4+x5IIYvMyXAHPwawhIOjjAFQZG+inwPIYqCxrKqeK+1CDx/b88lwFsghrNtzJ9sJQIypcBRjD7XZuYhzL4y/5tDL3VUbloAVek6aD3Qx0LSm0gIHuA4+sWk2/zev3g3xQYXj42QeW25LoEOg8lCFGY4Hzyvv4mhJhrp4j2NN6ew9ez4tsAEAUEsHCIhMlV/vAAAAIgEAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAFQAAAHRyZWVzL3QwMF8wMDhfYXV4LmJpbk2SaUhUURTHj+Y6LpmNSklaaRTmOrmmc33z3r1vFLQPGoZoRiYuiMMQVgaSM7mRqeiEkOgHM2hBqUiMSOc1EYaaH8wsCocyogiSsixtszozvokO/Hnwfn/O/557LgCABwqCPLUGS6tW2V5I3B89NTs11FC9cYA5IXJG2b72smgYLH8Xr2ZGSdUFRmL71d/8VYjG77r/BG5vRDDsZF3J9WRiMZ+4f6kTnGtKBTdE7jbs6LlYy6B8TJw9UEnCShrJwN17fMVksOCNyAfl7cgFrQAGPSssrpdi2k6TWUVnuvllMh+LJE722kt/UwRLEDOdaiItbsdJ0mQRf+HHGK9CtEfOXpulVQAIZC9Knqj596VEtzWbT6+LEXyRrEf5/ssd1wDUCVdMzWZNz4r6dsgYdzQrjo9HkiB77TU/Q4FTUZ9nOeREwlmykBEljBuX0hIRJcl3aJsZinVaqI0Uj8woJJ2xQa0sy2K/899SF0SuKBfZCz3hWmg/J5o+RktVq+XmEN8mTt+uYbZdeTp2ZqvVLVqwPKa2fcxl5Ek3Jp7Hx16aTI9BtEHW2t7CKMwbaUR1jaSTOGn/5ARpfeCamIwoRe5pvxe9yMBwTBzN/aD2V42au0N30Y6Dfswf0UaUv6NfH8cA7vBV4a6kzGtQ+tW2nXYPR3B7EaXKXnud3ydCXzAb3GQyd1uzpYIFH8Y+VXNpiNTyzPb38u089rOw5Nkkojs0NzoVGk2HHhqoApEXSuE4X2wZnq+Lxp4MIh5LbWSY20GvrfRrlIgCUEpHbgdFn4J29qSSP3155p+5Chq++SJve7DpslfeLw9whlprr5PLr1uINU7BGT63aTgkGjl7LbeIwfQ2lu8Woe59tWxWLmXRWym7hUBEQahARzu/AAaciQ7dnxppVPmSqBFn6hfZKmAICLLXXtMuOO87wZrDS5UxmaTCepjvHS/jKSIE8BdQSwcIuMUvts4CAACYAwAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAARAAAAdHJlZXMvdDAwXzAwOS5iaW5jYGJgnbSkyy7dgIGBlYFBw/FUR+UeBiYGljdHsuw0GRgZWA9NsnYQ+AAU6dEzsjNO22HDa3pj9wewag9Ho0VrbXQXHLABKVQ3dAUqBDJ0m3Qc/mgk7ln29KE1UCELA8MKR+c7LTZ7Hpy0YQDzPRyjIQwLR5AdLL5lwWCtLIs2+TmAXKCybuIeoJ2sNssm2bVPFtvrs2YdyFWsN6wP2IHtOHrJ1uGei/yeU6dm7wRpPKYX76B303hPU8ovG5DCVY3zwc5n+bIzAWg02LIKx++Lv1p7fF+0B8Jf4lj+vMbGpfWSDdgNxzJgClscewwv7S7XbYMq3OMYlj3buu7/cRsAUEsHCPDbyBcAAQAALwEAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAFQAAAHRyZWVzL3QwMF8wMDlfYXV4LmJpbj2RaUhUURTHT1NquedubpRSltGoqan17rzl3jeKVCLSZi4RFoFbHySmTC3NLJK0MCxtJQiRRCPDzPdytEXDGKIoaDVNSPwSkiV+sTPjex34c+H+/pz/PecCACxHwe8oM9w9aQ79HkNqL35Twr5NUe+ROrYEkQFlPx1V381gyNNcORuizr3PI+PtxYkbnjfTWETLNC21+5wnZYBxdi++iJi6o0lbT7l03HaYumh5LnrPW+coFH2Wqz15cnO6mHRkR4tydbrkgcgT5aHnDpRSvJEGqg6R6NVnlXlWJJR31QlxiOI1r6Masxl8tMpPXfeS5OEyciftlFjIu0ibESVo2Y7cgTwK0S+YoXgn5xSaQh5O8NK4OYF6IfJGeen94IYIkEGvP3ZX640N3KTxkmC7ECMlIknSvI4qu8ZgrJNm+64l03sqSI4ljk4n5fNbECVrO7TPDK3xZvC5IsdafdR5049+g3Cajm0UmJN9ZSgnfX/pIWZo7GODxnC1SmpQ1szM801eFroCkStqhT5HY5AZ+E1UsYaqudtL1Ae7jpqab0fyKxH5oFbq7/vpawZopvZ/ux+cpNqvuPUiScEzVfMuVpcIfBA9ktyv5u/epxrPv0k4kJli2opkm5btyI01MvjF2M1jo/3t7l8U2wE/GsE9k3wR+aF89XbVkRQynZl/wEulQhGfGENtYsvgjMQhIprXUd6MARQIFtuY8qayjdS2WqWST0m8CRGv7caxl/qrDAry5ZzeEc5noUnZ99BC+7LmqBsid5Sb/r6CLPRZqaEvh7O9SiN9t3gqv94h+SMKQPn/n1fE3BrpRN1VblVPhjrnlUpHjQZBsBPNuzhHIQU+jHZ4h5OMyzXkTFS81PL2uSAholq2I7coUwa+lH4K7lSy+2e51QfH6P4/wVIgoiBUoN5vOEqGxk3sb16N8q53nXoo4gP9OpRpfwzImnexAilUd0kbZZHLXbCQxEdTom18QsDPhDTUP1BLBwj8sBy15QIAAMADAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABEAAAB0cmVlcy90MDBfMDEwLmJpbmNgYmD1nFRtl27AwMDKwKDhuHVKwh4GRgZW+Uw3B00GJgaWZ/OM7AQ+AEWyj4g7qHussmZ7u9LmA1i1g2M+z+E98WdjbUAK3SPCgArBEh6O/1ctsFGbvM4GqJHlEUuOw03/yTbv47fbAI1mqSzxdjAF2scCMgFsH9ARk5ZMAesGClY4Mi97YW0X/mjPB6DEDJYddimvN+9WvWUNVph3e6qdJsiFvjYhDiCHscRmBjjo/zCxubd8wh6I/RGOZ3jYbOJ9ZoDt+8yR4QA3epk40+6w0tY9EP4Wx2gjO2uj2g02AFBLBwjUDRGP4QAAAAkBAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABUAAAB0cmVlcy90MDBfMDEwX2F1eC5iaW49kltIFGEYhn8P67qeVzMzO1iKQgfP7q6687vO/P/sBl4Yaqy1qBmbEdFNIR08LHaRYGVGVFKyFi4aikEXLZUzLUpUWqyGUhhFJRVsBkpWCNvh23GmD17m4nn53ne+GYQQCgehJI3Z4TlnvjiZhwfSR4R2v4XUh9ykQYCCQYGnNJ4yin6u8Eu2KHHBvRtT3xbda+8Ctx1QqKyQgC/uNEWX5/gzuwx4qLYa+xZSOPfRXk4t56mVnVOUIlRNxl9U4qK0fibSq2Yb7e/YaEAxoGglF5nKUByl+XNVjOVQFW6vCzMdafeX7QSSJXtXx88iRyHp9B4T9/VF4NytT4wH7B42G0iOnC3lXnPzaLGTfm+x4gw/wZrHLra59yAXG6gOilXWvddSZHPxj2YteFG/F4v9yeyPE9lsLqA82StNqoUih5N40wz4q96OvyQ2cKce5pjyARXINwzcBq2hZjQ3yA9l/hFqkidKZioF0lNRSVWAwkAqZd/vjWZk2yDduWb8kmCdjtcf19wnOwBFyJLeo2+YoKdh/MkHLcxStyh03LvO3e64QLSA4kHa//0GCbRlxxq7mbNN50VnWw83+qkcFwLSyV5pFlmK1g1T4+d6YWTKJ9S1RZGgyRiiB2SQO0rf1+qmKLyJb3Cpsa41U/CnVxCVKYlGAooCRSr9TPMExbXQV4UWZiYhC28qd3Irz35xCYFTgBKUXMdd6DfOFes+MrPTBaLvajfnfB5hKgJULHtX/7/1BNXvoX+7BpimOoxd+RPspH2MKwFklLOl3NAGHqX2kfk7+4U3U8uMvUNDo6/ouURAa0GJyr6qbTzy1NKu3lujwy8zxLeZwfRwaTPLAMKydzU3nSBHClkWvxlbb9iw9oOf3ZxiYEsDrwj6B1BLBwgw3crQnAIAAEgDAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABEAAAB0cmVlcy90MDBfMDExLmJpbmNgYmCdtKTLLt2AgYGVgUHDMV/eaw8DEwNL19x8O00GsGCEo8AHMMPC8a/kwT1VXZNtPjAysGpqmjrsqxS2OVE1xwaog5XBu8hOACjB4no1yuGwT8zee+8t94IU3rJ1ckjoOGbFkZ1mwwCUlzkZ7hANNJqFgSHAURPCsHCEaE33dQC5wK6wbc8HoJkLBPbbRZyx2t2fL7UHorACqBAoYd6/wW7zgnbr/7I3d4P4Ex+us2P+NGOPY0A+2PmtFjvtoEavATsfrHXyeT0b2dWL94BcVfEi2uHotql7zJ7MBbvKMrPCAa5wZovUrohUV7BC0cYqh+bj/LbXsoxsAVBLBwg3hXIj/AAAAC8BAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABUAAAB0cmVlcy90MDBfMDExX2F1eC5iaW49kWtIFFEUx4/Wum6bqa2baQhCG2mZWqlZuzszu3PvTKWJBVFkxiY9TAvRKFczelgmWZBmZQ/ESKwPmVQUijuTskFFZKbYw0jrg2TSByWzFLHOrjMe+HPh/s49/3POBQDwR8GoSYT646KYomcOrngi7ex6RXL6T1EfRL4oz+mN8ocU3PPElLuTknglgfncHpr081YViUc0W9EsT17MHwGyr1NKrMw9y7j1e8M3PmNZPNEqflq15hmDADmNQsHhOKbaxDNXm2/xlQe0fACieagA1RdEHrKDhOOOfDnsUDJzLfweO5Fcwa9EskrJnY7ndmi4L8Rub7YWX+eZirxIW+WLv/bVSBIU7+lZhm3grKGaTp9nHy4D05n1nt3vjiGBSIJQgTP1amwA8baJJt2zntxBGUbclq1z37CJSJKUXG+cnE8gqow6lzktA75BTIlRy+8a8ydrECUrO/TMDJszREjVCTdjP0nhp9yWxZZIGjj1lGgQ+aE06v7mxokQslKo/joi3QjOk7oLt5CDq7uJDtEclE6doyxchPh6aowAWeo5K/ntPMZt276JBCOajwpW+xs0iNDWTTz/djEgSvZc+SyqZdfiuU7J9YYjiGLHNO/ED1eBvl3aWDvET9FG3ozIonh7fV06ARwR1N8w5Vr+LkJu6usg9t+1nAFRCMowUy+BwvoW+rU82tr26JwUG7GCnIdcYkXEKLnT+xvnwTFJSmNZObrKKHc4R9mivWEci4hTduPdy/B9Cukp1Fd/yRqtz5JOu0pIXUYXr/esDKVX+6u5SKGtmKT1JlrT/7EME5dNTC9P242IFqCMqm/dbgrcPuIs7bUOXEmVhxLTyFif3o6fDnYlVxnEBlwhOWoyy3wmZSq/yCzbWWjnkRDF2+tbtwH399GW+TpfSpvsYMx+b/mlR3LZUEQLUaFqOe4jPmsl8pL21gfymFR65yFPfnF2fAyCkjsdkdhKuW1Py2Pmgqaf2XE7ky0yGywikvWo/1BLBwh8vfRI7QIAAMADAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABEAAAB0cmVlcy90MDBfMDEyLmJpbmNgYmD1nFRtl27AwMDKwKDhKP7SdA8DEwPLFY54O00GsKCHo8AHMMPCcfqptXtMvbptPjAysH6LtXDIV0ux+fOsx4aBkYHlQ2GCA0ghCwNDgSNHq4+NlIzcXpDCK1I5Dp6qZTYZq6eCFcqcDHfwYwArdHCUMQCK7E30cwBZ/AHoGlXPlXarDvfs4ReOBDkE6Lr5dlBjKxyt5l+29oreuAfGZ/uxeffaoCSwwrzbU2EujkC4uMaWf2/O8kAbkNGrtZrs+KTWW/M/67JhgJogAHQhi93NWAdLPy2rP3xWNhCjtzj65eXuCbqUaAMAUEsHCFA39LnsAAAAIgEAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAFQAAAHRyZWVzL3QwMF8wMTJfYXV4LmJpbj2SbUhTURjHjy9L53xZ+TJdSppRpuaWTp3Oe3Z3zzl30aCgTFhlRCpJhETWl7KaIgRm4ksOy6hlZkJ+KEvC5N6mKGX0wTSwEmQzk/wSS1Iwejvb7nrgz/nw+/P8z3meAwAA4VRAJTfbnM3mrW4l3JJ8XYh1ZGDX6k0SRFEwlff0ldNEwNo6X17xWRj9thO2rG/U3ZpdRBqKQiWFeH38Ag9sDGkbyoZvq2NgVpkVTSTVoDApLyzQ01NHQP8YXzGvhpXdGhhfaufaxEgURVE0VVQgF5gRsJ0hJYxVHEvOgbfV/cbtc3puNyW5ktdXtlEEel7ysq5oOJKqheMNLSajYpXLo0gnZfvf8gYD8AQ3zLsZkzYXfjBYkOfUH1MMJUqqmEA/dpz69Nzevr9M2v0JMe2THuXJZtl8igokrz9XQMBRj/fNJkEuwQCDp5ZMKymZbCFFemmGG7y+EzVmUJfN5y08F+zPIJPlMJKM+Wksk7hM8oLubWbQ0sHvr14SpjJThT1BR1idzEDkFEVQyQO5v1PMwDmDvfuoMqrE1h1rBcvqO0YtRZsk+feWjoGrHnf+0IjLj8LEmSvJxgc/FYYiioqlnr65tLYRUHqML1s8wDS9axaaiy5gT+cKjqUojio20O91EwHAihpRI5M8WC52TZ7D+uUB1kBRieT11dEiHrhiSfjacWGgNkqsuuTB426eZSiC0pt9/8V2kgD9F2K/oYTW4HsvarM+oulDdqygKJJKEbifU43BFEvAr/OMhU2D7qFJbtjSi+IpSqCK//9fHnPAGYrnIp+KveEh8KzaoAtFDzmjd6WS1783BwLObNLhOsy0390FLw8Gc9GydmSiiJOy/blXCfAUE5emkNHmXhNOyy9iNkKLVBQlUqkC/VpzCHCN4lfu94aR9q9Mfs9mjFTDCFGEJa+vlOEE2Cz4e2WcWJseBRO1+dzB0T6ODhXwVP8AUEsHCP8dhevSAgAAmAMAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAEQAAAHRyZWVzL3QwMF8wMTMuYmluY2BiYJ20pMsu3YCBgZWBQcNRb4fyHgYmBpY3R7LsNBkYGVgPTbJ2EPgAFOnRM7KzPlNsc3/Kpt0fwKo9HLO5U20uidfagBSqG7oCFQIZt+/rO9z+m7BH1r7VGqiQhYFhheO/Fzo2yle7QQpZYgwTHKIZwBIBjpoQhoUjSCvLW4dgB+vrKntaV0/dA7STdYHAfjvVjVd25Uz+tRuisMIR5BjW7D977VbUNFqfObVrN4j/2nitXfD38j0+HQ4g57OuapwPdD6QsX1vn50AxLkLHEXDRfaGd62yAXnnAP80uwsm02y0jSVtGMDyFRA3MC9LdSi4ut9a02KFDcT5WxxlbnvviZsdYAMAUEsHCApy3gkIAQAALwEAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAFQAAAHRyZWVzL3QwMF8wMTNfYXV4LmJpbj2TfUxNYRzHf6XQ+5vqcq+XhFDykkL3nueel+e5Jy+LLFtmqZa87ZZshqFhy2R5G/mDVcvQUkYySTqpLH+0mCa03kQYaq0hI1v53dO597d9d7bn8z3P9zy/53cAAKai4Nc8GW7myPnvPnCd7y8pEUse0JWnjjInRM4o21OtvPsMnnnLsaWtSniaPwnvTY2JHTxPlyNy0TTJ5pv82QLwkR2J0ZM383u4xZ6p0ueAdDpFy5ti37PkDAVrtyXK8x/nl2IgF465iV3VJskLkTfKy57bsI/iinQrRUeCY1OU3RkZwp3GLGEFoijNq9bFRAadjZbQMB/SHzmLNOUniT+GXKWViKK1bDW3YTuFhc/ZF71iMhWMcDMyiNR9azn1QeSL8rHvB5UiNMTR28We9Z/OL+C+f7suVNwMk2KQrNK8amVfY9B3l5LQDs7aEkl6ryylY7W7+NWI1mg9tJ0ZMjNlqDnJDFmlinw4nzs4GM8Gqg3U1dYylKu9fxtWyJBrtUx/26Rknw1R4s2H6NGv3swNkTvKzX6OtXoZdDWsYvyV0p5nUdYX/eb33thP/RD5o/wcfdHJwEdSd6+Xys4gY31Roc78p3Y2H4vIqHnVmhPOwJexR0O5daGFhUpzpQ/NNzVKJkSclq3mHlhmAT6bvShbVHeoeVzJbndnib49QgCiaagAR245g6Rq1tYVwh3P2aMkJBfTMtfdlCAya161TiRQ6DOygtEZ9anlw0p33QFhZvoagUckaL1R+8I3Udg0l5FMD3JD7DNtDZWlHP0ryQORJ8rDMastIpQ8pOtetz1xvhxIagwbhNNLV0uBSIJQgY771YkAx8Qu6+P6wYgtJL5ql3k0L5fHRZA078T3JVJoCKIuTUYycvwpZx6uFavq7ok4lMC0bDW37yr6yulf/2Yu2sVbad5YIGWOdYjBtiRUsGOed+CrxVJryz4uyrKZnHNKlgTDORF/GpA174RvG4UTP6X+tjFFn+ZMjPyAYBmwinG2q0f9B1BLBwh/7LXw9AIAAMADAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABEAAAB0cmVlcy90MDBfMDE0LmJpbmNgYmCdtKTLLt2AgYGVgUHD8VuE8B4GJgaWrrn5dpoMjAysvafdHAQ+AEVCQw3tRD/E2xRKzLb+AJSwMo9z6LgVYTM1IM0GqIOVwbvITgAoweJ6NcrhqYXV3npRlb0fGBhYGBhWOMqafbF+vr7BBmgii8zJcIdoBrBEgKMmhGHhCNGa7uvgZCO8Z0Ww6x6gnawLBPbb3f71aZfgu1e7IQorHEGOYTXv32DXEeNk/SRwyW4Qf+LDdXY23+L3KNbr7gHZsTO0wAFqdAtQB1Trku5l1hZlaXsg/DWO9Y/c9lRWR1gzgD3fAjaaJaRpg13hWQ7bhMCzNh/AEmsc3T9Y7Zkn12YDAFBLBwjcmvptBQEAAC8BAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABUAAAB0cmVlcy90MDBfMDE0X2F1eC5iaW5NkmtIFFEUx6/52NZddVNTFBMhSSkfq6lp7szOztw7K6Y97UWZ2kvri2QfMkFYsEQMxcTQCgRNIzF7QJaad7UsQk0Te9hDFgoq0w/VWrpWZmfHWenAn4H5/Tn/c8+9CCG0HIR+hBpRU7Hxr2GQsUSfobazrfjBpkLiBGgZyP6Vquw2QX2exrjoDvqWOrP2X7nhlVgLX+f/hCJmRZR3kRwMcWetUe2MMvuN0L4rErsBUoDcHD1HiggaHRPXGb4za1rVbM9JlbD/V7WgBuQBUjtyRwhBKAN7zKjYCouBCc1x4eOVA3wMoFjZK5U2XERdJeKFMgWbafViX8XkCnnkNL8eUJycvXiWbwZUWEeqGizmycf3Ga0wqq8ZX4s9gXiBPB39UJ0BmhqCn0yYLYFD5iumMV1G6lN9PJAE2StV1QmCTMV4tKGOef8uhM06F45RfwG3AVCivEN7Ntq2z4jSlKLmZT0N4Ot0xyaCyOGFNuwCyBXk4tifOtqIfGPEm/m3aFdBLHW7tAVPzTzD9rtSyncmnaM00Ii0TaSns4s6fyV06mEQlziehjWAVoA0jvkmfIyo9zneoeqg1ddm6A3vkoQiVb4+CdBG2StVtgb2nEj6x2u7B15U09T6SWGetAnJgHRytpTbrRRR9ipS2veoW5v1kfoUDWFbVy3nDcgH5L3UL46glE7SMm3VZR5Np17qSPx55DhmALGyVyrTnICy/+BPcyrzpOU1jSn/rS88EsDpAXHybqS9dPyE+XKxt4Ik7xwMZFv4Zlw5v5l3B6QCuTvms90D3yyOClvQ5ZQ30ztpNfgimeR9Aa0E+TpyNc0Ecf64Imor80GpMTf2nsfT4VYWLh3xsleqkLsY9Trh4Ms2GpGuYEqTVHxFXjUvAMJy9uK7yuORaQ9ummhkPXd7sQsufVxaezTvB8Qf5Lf0rnS8/V0No1Z2fLuJPWQ7wA0HruZgaCTK3sWqAZ+I917/QsnVMPZUgsLQ5Go1GIGkgP4BUEsHCC37sB3vAgAAwAMAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAEQAAAHRyZWVzL3QwMF8wMTUuYmluY2BiYJ20pMsu3YCBgZWBQcPx3hyWPQxMDCxdc/PtNEGMN+FhdgIfwLIejm9OGdkkOPjbfGBkYI3+4+hw0LnQmqHZ0gaokJXBuwiokJGBxfVqlMPsmep7P60R3gtSOKHTz2H7SW9rEw81GwagfIxhgkM0AwMDCwNDgKMmhGHhCNaqEBLh4FTItufD1X17QFoD19s67F7OvKe1Vmo3RGEFUCHQsuw/e+3Ezkdb64jP3Q1xXIujRYTTHldWMZDzWVc1zgc7n3X73j6Y8xc4HpvEsHfmtz4boAkszrxT7S4sbLHZsYnNhgEsXwFxA/OyVIc3/2Zb5yRPsPkAtnOLY4mW2p7XgZo2AFBLBwgYZqmXBgEAAC8BAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABUAAAB0cmVlcy90MDBfMDE1X2F1eC5iaW5NkltIVFEUhpf3NDUrb1gvlfYgZmpmZrNn5py99xyNBKEekkorTSMvKWT5oDRlWGZWopDTg0h5nYpK04zmDKaWKYKZYDckQUJJs4uihWWtGc9IC342nG+d9a+91gYAWIGC2UAJagulm9NtpOtrlvwzpo4NTeRxO0T2KMtpjUsPOXR5Sj7ddXLpxi/E8smUW8bC8HT4TxAyr4PjBt5c85M0ed0mnc1vafL9EOaMyAXlbKvp+VoH+ZW8vfUPmRj5QMZcFsSmFAN1R+SBcrf5fivgkNOsayj8SFSX7NRxW0rEVdeSxXBEEUquNfRtFLxKeGKfL+kYGyc7Ms6Kw7M5dBuiSMV76S7fBMiv4pFJL83Ti42koHtQ89cQzDyRrLK0ZasHVQJAmGCvHzSHVrWbA/RvVHt392u2I4lScq1xuJZBRxIPNC2qtO8HyIJTGX3S/5zuQBStzNDiDVlZErSf46lbLsol5kxynu3hxnt+zBGRE8rRNr89ERJcyNRlRlfLc0cd5LD4PPar0INbduWq7Mx6j7h1Evi38/ryJvmktEne3PJZqw/IZV6IVqO8bP0VB0gAlFZ4NMqZpdnmkX1u2qBQQbMTUYySaw3tEIPYIm4sr5XH1z8znfgdRx/dImwXIpXibfU9FaYDbQ4v0bibirYOyA8EN5507J2wBtFa1BpbvetGDvvbePYRVzJ/kMkpO6tZ26d0Znk4aiV3aW9GBrCOS9M/5BvFT+Xvd6bVTUWvBI2lJWU21rloOxkkbOSjl6fI51qzqscg0snJXuqGaCXKbXm/fSLUtLKc034m1/hFklwZLISLUdQbiQ/Ke3m//iJAgXjmcY1Z+yhCXVierlHrirS4dBCV3KW5aLC/EMb6gtRpyY1keK5FNM20iBQRU7ytvqMGfAdGdndDHXnRP2FKuFFBA6d6RV9EfihfW72OVPytmjYsikQqiFRftTtEeyquiByRTsldyjvAQD9DV7cOyGn1QyTo47gwl5gh4jIhFvUPUEsHCD2tURjyAgAAwAMAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAEQAAAHRyZWVzL3QwMF8wMTYuYmluY2BiYPWcVG2XbsDAwMrAoOH4dfO73QxMDCzuEWF2mgxgQQ9HgQ9ghoWjfOKmPSHrrW0+AFWEhjraxf0zt5Fn9bJhYGRgjf7j6CDwAciwuGvskPTSec+Vi+esgQpZt/ZG2h3tm77HLVMNpJClssTbwQloNAsDgwPQaJALhNrsQBbPUwJbzjppyRQ7kJ1AFRWOvq8zrLWU9+8B2bnZT8Le1uDQ7nXlj2xArlQ9uRHoSqCZnzkyHMBGdc2dbFdce9Baj3WPJcgxoQcLHIxWsthMWRsJtjxiOUgh1OjZU6x3Sy1jBRnNqhe3ze7EhLg9a9iZbQBQSwcItZrT3PIAAAAWAQAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAAVAAAAdHJlZXMvdDAwXzAxNl9hdXguYmluTZJrSFNhHMZfU5dTc1vTWWlaZKR4mzNrNt+5c3nPjAxUYmiEgdkFjGlipZCoX5RkmqGlTqKRRX6IPlRSpGfe+pDdlEzsohhlpBNKygRNqf/ZzokeeDhwfg//570hhJAfGIXKzdX9NnNfphPr8lL5P42+rCbxMvECtA4sfN3qpwhaWuYqtFf440nTWPgVcWKSiYWv939GQa855LhO+iwzGIc9wSs3VmiSco2RAVoPlkkzFy4QVHKPM0cN49PRc3h//EVacekoHQhoAzhQ6kVmBlWXkJPL+c6YDhdWT/amk496OgFIoph1K7+dQ00ZZGntCz5Vu4rf/VDRHbY2SgsoSez27OUhg7QthB7yxjnRr3Cuq4r+NFHOBAFRCMv/11tOI9TGPP68yO9kavDd32VU4XMDrQOSLGY9KqHQo2ZythQ7W71HcXBctulNbhmzG0iKeIa+QiyYmNH7Lq5GU8/3FYwbkp51s1cP0sRH5D7S+ta2mtGRcK74Qws/Gon5ulqHfiikmxXuSi7dmaCs7QTNqs3CfXSOt/DHNt0X6lAcOF7Muuc57rDoqYwb7JlLGw+38gvldqYor4FVAdoIVknztnWxCClpZbMKL85bnZRXO6NQvzTuAbRXzLp1SMYhNEtl9pbyL+objNlyGxs59dWkB5Qq7sX9DgqTOZQVwRUo0/G0PZJXjMywA1N21h9QANhfWl+UAuapSGzPz7Tzu2axZWCEtVSGMWrhyMBqqVdZR5C+lYxOnsHnZEWGHRMJ7GaXld0HyCBmPToM++hmq8Zu4cpAP2No0He6cVVOpwHBYre796aGQ9W/mG8aHa/NO4CtOU3sA7uDDgGkAYdI4/rfEqSMIYMVrl6H4jZfHG9jS9unKCOgdDHrUT28lzGmckuAs3W4E2fMzJt0FhttAkKB/wJQSwcI6HJcm7ECAABwAwAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAARAAAAdHJlZXMvdDAwXzAxNy5iaW5jYGBgZWCwcGxkYGRguagf6RANYvye4uegycDEwLo919lO4AMDAwsDg4aj1tVruyUnzd7zASgxKabFDsSPDrq2G6Tw9raVQIVMDCwqEyfZfbljuOdFe/meD2DDNRz73n/dnWbOt+cAUGHe7UVghazhfJl22Stu7Ik98WJPVVLZHqApQFum2fmBGXbxdjIGjAysa9skHO7kde0GGd2mE2K39J26zX1VKRugK1mf14Q4CHwAMhykDB2O/3fb82XXMmuQQoYF7XZG5z5aN79wswGZ1uV3zk6TAeyLCkewjp0q7g47/Kp3cz/ItoZ4b4sj7yOFPS+uSYN1RPBJ2IMUsnyWKnP4tfHIbg3W4zYgjcuUrB2yzjLadHGI2wIAUEsHCD4tQUQbAQAAPAEAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAFQAAAHRyZWVzL3QwMF8wMTdfYXV4LmJpbj1TW0iUQRQ+W5q1Whl2W6lYCF+k22qa6Y7/bebfpLxEhnTR9qFISWrtRj0IWrhmZWVXKmttMepBM6kg0/mTZKPsYhFFSdQSBBK+ZLVINzv/7mwHPg6c75vzzcyZAQCwIkBJc0GJxxWwHuG1UgFJvpynKO0+ZkFqHMLMcaZup8MFUKjF3mjgw2Prje/GkDzh9BZpPFIxiPECsCHVBcFPtKnPywf5AG+MK5Xb7j6TzB4TRS+zJ7ivUbCnuIY3+fjYrzp+WCmSM7Y+yZqC1FSEmcMRPEvRQctmXu7bqxpmqTLujpSGOV1ow9HbwGAoyWXq9n+r42ap39KWsRRzhvAO+4JKIVhLKxr+8uv9bfwUcUtvn/Q6E5GZhkiM9qv5rkHNcc1R/IF/vZ1sxNQnSL/7OpZmIrVMaCNRogEU0K4757kU6OQHvc3mtiALsVzcTcT3kQrwRvW7ThhH/9iMUKI3x6xOQiwSORKyAnBT1SrqjezqJuNHaaTfYsQSMZMJZqFnpgsyb+nv8vvIl76BnjL1Hq2at5bFCj5WaOFuUIcam1699QW5NNJMNpYt11oP+Kk5+/joG4j6tgT1U9aFHOpfkHUWq3wxlKk5kJkuEI5Dz3XoTWSFX16Sko5e4rv6SK342apmI5UjeobPa9/BwNPNCvKdZL4lQC40ZtJLfxPoDKRmImb89x1Uoaicdd0f5Z0VRcT4/Vgp372YOpEhQhuZh87AvYR9tJ8jrf5REirdrnXMuaLlIiWJM4ffX/FmHWaP07tWDHafXL2dn7PNYWuOuWkCUpMRCdH9ZS3QweNmt8vmO7s3V3KHNYl9bozRZiE1GzEr6muvYhD8yNKnzeVxlUkkb2UqXZU+QGWkFKENh8fBAJy0Kfkx9z99QEJvU9U0uV7FoYMmvMO+hyw6vjK11beLp7zak/veW0q3lU9RbEglI2zRfqtMnUfZ92EPr3q4L1d9vZHG592S8DMAE1pxMbiNFiUg+0l7f0/uSHGZbB84I+NiwA8L/wBQSwcIvEnHDfgCAADoAwAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAARAAAAdHJlZXMvdDAwXzAxOC5iaW5jYGJg9ZxUbVfCwMDAysCg4SjwgZGB5XaCv0NR5MHdk5w272ZgZGCNMUxw0GRgYmCZVp1nJ/ABrNTC0ah00p7eBn4bkA7O7EgHjnXSe/OOlu0BKXyXaQFT2OM4ZYGYjcVjYZBC1hM/sx0eXBK0qW3XtAEazSJzMtwhGmg5CwODg6MmSGRvop+DwAegu1Q92+1Artj5+MBuCH+l3Ys1ZnteXPyxG2gH6/bcyWA7gForHE3nL7Nu0H65B2RHorKjw8TY+7s1HsiDFebdnmoHdr7n0T47kNEs4bu77MrOM9qY7c7cAzFhi+O5s4E2r7mkbBigJkKNznB8FMtglXhGyQamMI6Ne0/2ORYbAFBLBwj6Es7wCgEAADwBAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABUAAAB0cmVlcy90MDBfMDE4X2F1eC5iaW5Nk31IU1EUwO80W35/LD8wDTUri4qZpXPbdW+7976XfZhgQZCRZmlEhaYm6MiFiWRTyggrtZaUlS37Vsu9tSKwFJEKKsjEwKD6I7QPqT+kzp5v0oEfD97vcM87556HEEK+AIr0FSwuq9B26Dz+cCBCHLgwRZRvG5kClBegkEEuI0NTf/iXm0tELvoBXtnWqg2ZfEu8Qc0B3E8pbJghdMw0fKtETFPliZ7XaiD5/9x5e3n0vZaPrenElbwT51/pIdcLq01KtwKUnroni3iEJoyHAu04peW006/sPrGqgrlAUEFAoKcAEggq280fCUtz3s67h1f19Bk2PbGT1WBS5NyZOGlEiDPWn3vq3K2LdhaG3tVffvfVsAbMWrm2VHcN5lFeG4s69RAPnX2BRxoec4NnCk3BoEKAYM9x2TEMxUXwvesceO5ILx6wGriJFAOXCipNzpUi7j1F6k2sWejGuV9e44XZOaaztU2cBlS6PGt3z2jXQQGZV/DmTF6sFsb1dbEadm3LM+oDai7g45lfS6KAGk/zLzSHxa6b3Y430VHc4qFU5r5TP/lupT6mYwXkek39l5SI++094vPwLM3o+q2GUFBhQOhsH/EMfVYJ7nu7GlMidtn07rEhLaCTc6VwLaJo7ChN2DYuqmtaxB+3WzP+Lm/V60FhubZUt5hnyFLOK5RJeIUrWGweTqR7LgcwFaj5gGp2XzjYl0cmLyEbq/tOORvU8fRnQT2XAcog50oRUsyQOZ2vOn9CTH7X72iv/Ugq1o5RDpRRno00F0sRQ5pPbP5oO35p+KItSx0mihuN1B9UAOA/u1fRDI2do7lZpTip8xfOryolod+WknBQEUD4bL8B8H07SA5px4rwMOd09XaycWW+0QSKyLlSWPZRZGkil+K8MzoaXNhxJ4EsoBc5CorJtWf+ozqGJrSswPpbb25LEAMaKqiuNIhEgooCIj3n5cH8uCaaW27TVVYPYn+7mlomjxPevely7sxc5sGcN9Bf/TdFH68OvOxVmkmz02ZaByoT+AdQSwcIPElrNQYDAADoAwAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAARAAAAdHJlZXMvdDAwXzAxOS5iaW5jYGBgZWCwcGxkYGRguagf6RANYvye4uegycDEwLo919lO4AMDAwsDg4bjFuZ1u8P2VO35AJSYFNNiB+IfmLl2N0jh7W0rgQqZGFhUJk6ys73Mu2d+k8+eD2DDNRzPlx7Z3Sb9fPcBoMK824vAClnD+TLtVkZs2RN38eierJ64PUBTgLZMs/MDM+zi7WQMGBlY17ZJODh5zdz9AciecdXYYfWW89brD7HbAF3JKq7r5yAAktgsruPgapCzZ32shzXIDQwL2u0aBXZbR2yWswGZ1uV3zk6TAeyLCkeQDpYb+6Md8pfl7/yUK2gD8d4Wxxxe9j0vI/5bg3TUygjag4220XV2MPF7snvBze7dIKM/PhK3X5saZF0rutUGAFBLBwgBY/CRHAEAADwBAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABUAAAB0cmVlcy90MDBfMDE5X2F1eC5iaW5NkntIU1Ecx39p5nOlSzfNBYsexoqly2za7h733McssMBItKgtorCyLHoYSGqEI4xSgqxYDy11QoRii8LOWBaiVDYwgiLr4j82IqTQijTqd+c1+sGXwzmfL7/veQEAJKDAYRKhpFKUqtxUX5DFaEa0ji9VXn4OoiiUPMbKvqM5IsBmEo7bRXdqrIGm+rt23VuVLRrRXFS0IthuEEEa5YaKymhfkY+eChntPXuv2eQecUovuSe4OjjQLxed47UU5pfSBY0r7PfKT5sXIEpGyWOkpMscJpCWs6XU79cF5KWKWL8tF8d1ijdSwXM8fFooyr5sKKXN01dN8nIear2SHckFlgOpjhthh6j6ewPtpWbbOYPXkoJEjUqZ7Vc7QaD2IlE5u6lw+w/1joetZ751rzUjyle8M1VCAIo4cuk4zT3SSPcfzV8rrxagNih3M5M7wAK8YV+0Hwv0aRMDg/uub9jYETTFI8lGxf/rZ3cAdLHDh9yB+/zJwOSBJtPtWw25OUhMypvMk22PNSLk9QgHbTeYjkDH41crH3Gr+4v5GIXHKF54KAlQmyFMpXcyw5PVTGN+PlnmbeESESWhEv/PvSUJw14bLVzXyZTOSbDrP+QR+TAaRTP30k3g3YjwOVTHlPV0Mlkem6P1qYFYEDFKz8h5kzU8/BzjM9wDlq9rmpkt7AQxT4ucFlE6Svsv18dCKJlfdWNhIPP4L4sUvuIInwgTKxKb4o2Uq56HbMK3vi5njK5+5uKTl6R+IEjs8hdWzhz5f1v3CJAeJegfNPRqK5z0cGomf2eJi1Mhmo9Sze7PvFqAShffvnSl5Ueakz5rU/PPx36xGYgWoTJmc6tTBZAoFzOQ1nt40M9savvOCav8BB8TiOKNVGUOD2Dh+kM+2tR8k9F3Glg1ePCzAfBKdiT352+cisQ9VUw9QQ/jjdrG6RZr2UxEOlTmbL+ggYcrPl7qukBjQ0Z63VhDXKNpnIBIVLwztRS3kcyer4lm3pfttu4Y/Oh4EZ/kcCIpRP0FUEsHCNpn7xb+AgAA6AMAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAEQAAAHRyZWVzL3QwMF8wMjAuYmluY2BiYPWcVG1XwsDAwMrAoOEo8IGRgeV2gr/Duzlzdgv9aNnNwMjAGmOY4KAJVMHCwFABVAFWauF46GnBHvuLb6wh/CmOvRO19/LPu2HNwMTA8i7Twg6qsMdR6tdn68Xc762BRrOe+Jnt4K/51rojlMcGaDRLwkU/h2gQ48pXB5gdHkA7gGaonhS25z40Zze7X8VuEH+SioB9dsWp3U+jO22AdrDe3tYJtgPsqrPzS6zZTW/vgTlusu2c3W6sMrsh/nJw1ATZ8ep9hAPIaNYevVV2PVXCe/y7T4KMZn25aLGdFeemPTreHntARltvnAczeoUjX/NCayUhZRtQyKQKFjh8mL5kl6OaoA0AUEsHCACSreMLAQAAPAEAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAFQAAAHRyZWVzL3QwMF8wMjBfYXV4LmJpbk2SaUhUURTHj2uOWpOWo9FmKrZ9yNLMmrkzb9697z2tFMMPJViO7QtkRUG0oEZa1pRYJhWFIdkiRBFt0NxRXBpS+mCLtE8lLWaUadhk65nXm+jAjwf3d7j/d+89AAA6BKJ1SnGjXVnQso34m784XN/f0fQ+u+SHyh/x04BGqwQD3+SoeMqNPw6R7uV5xkkP7tMAVIGI96vWKSIB7BantFBuSE3kvuUkZPr/vSGrZegrlXv0+0jrteOktf4KXZFWJA7xKmSIL/f0chkglya+PUBan27kmcZztKGt3joU1TBkqC8AFAp7C+RjFQany7+KRBfctJS7aukMNMla79+yiQATaO+WTuftpXvIM89PweZZLaSgmallq7kpRAbbSckcWk3u9NeRWaUNgnvdSlGPajii922XPUaCWIOcveMokVcdIW12i/A72SKkopql9aoV+4RBUqZ0d3YV6Vl7kdwlOaL+1yEhDdVs7a69Z4atWQpEVstpwgz+OMvP5Dn4hikZCVIQqmAkyHd/g6MU8CyQm9wSH13w2bGZhTP3YA3zvmmo9rbqObqGK7AhQgqeT7m9fz0PqSmjurZKGoEqEonw/d/hYQrASHawj/KWpNF8UX4JbdZNtM5BZdR61RL0+L7hYqlhJ39+ear59S07vZQbYDWhIlq2misUMgik8rL4ftMbGsabdjP6aaCMjUA1Ehnxb781zDtcL7piSIJfufO8UaSral8SMyqL1qvW3jMSFLslD57jaHCzo3tuYAppKGMCKqt2N+q9xH5gkL1Hzhl/jr8KrzRtS4gTciLipTBU4UjYv3m+h7mUjt1XxX+Mm+y8fiPG8r7IbY5CZUCifLmN8QxelLBpuTd43Mft3G3bZZ73c4cJhwio1vu3LuFSp1i+f4nz6+JBde5Te08kYwhIWraam9QhQUii7KrYRHoXhzry8rcy5ZiLRaOKQaJ92z08K4GtjnV0ZZD6znYSOqqQKRd0ouyddK1XrfTxuPSQ9vBMR0fhVfIoq4m1L4wR01FlIH8AUEsHCONUZNQCAwAA6AMAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAEQAAAHRyZWVzL3QwMF8wMjEuYmluY2BiYPWcVG3nx8DAwMrAoOEo8IGRgeV2gr/D4s89uxUi8ncbMDKw9pqKOShrlO5hYGJgcY8IsxP4AGQwODjZzfW4as1i+M0apOmvfqLD2g891v4z31ozAPkJF/0cokGMK18dHDSB5rMwMHg4grWqnhS25xLt3Z1bGb8bxJ+kImCva7ltN5N9uQ3QDtbb2zqBdoB1VDimacZYB3se3fMB7EILx0tze3arZPPshrjYwVETZMer9xEOIKNZe/RW2UnsZtlzPHkryGjWl4sW2zVZL9izwtkE5HxW643zYEavcIyOmWjddFjIBuT8FP1yh1mhHbs+/rSyAQBQSwcIk8duNvgAAAAWAQAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAAVAAAAdHJlZXMvdDAwXzAyMV9hdXguYmluPZJrSFNhGMdf89LWnPMyLQ3CFIuWtalZ6fZOd973nFmmFQWVX3KakLcskJCodKJTaETZRS3MFLyAmdLFhHa2WalfCplKaYGp2UVYX/oQKRk9O575wI8D5/fnfd7nOQchhAIAtFFqrHJajc/6TbjQ9ck28H2eZJqsrA+odYCPCHIaWPR7iWtoVfPFB2qwypKoTb0zTnxB+QGep1APMYtQDWPVaHhlYzjvfb0DUInZ1Yo2oPklLiIl0l5fUoNLzfL08jQX2QlGIiL0/efi0I1WdmWoDl93FOCeLdPMY/s9IgcVBMi9x7kHIZfB5mXV4vaZZny14Anj19JkiAe1S8yu3i+BRVVydipeg8crb2PHmJk8UhJmNyi1OPN6T64i24hC73KoNJqPG/qhHdB/o23OWNZf3Ju/d+blSCP6c5RTRyTyb/G0rUsVSOPetVIpqA2A1DvHl2AjOh/ClrxR8wVBJ/i2FgtZaLlJFKCCAYX3freCjAgpaVaOhl/okfEnT5vJK+l2gwZUgpgVKl0Bew5kKkbzeVNdlP7riJX0nfI1JIJKEnsLfdPLKPIjnP/ER11R77LtVxQlOW4LDQEVCoSsnVdIPR95tlmKu+9ftHdrGXKsfQ7vAZUsZoWq74T9fWa5YTX/s7bP5nmFHRa6F577xN0Ie4l2U3SkjjtzuJFvulat63wQkL71dQwrAxUIyNb+qwnoS4i5r5a/krzJfu6DJM0tea4PA6UEwrx9nbEUzZrpzGIHP2jL48dyq/Xlfy/r9oNKEbOr1c8g9J4xHcywNxyf41cmz3pGQKmAVuwt9NW4WCTZxiVl5+BLiqWXI/oKWlk5SsNBRQDh3uOmuliU20EvPE3G+eUvsCyyjBp7pYzOM7eYFepQDIdQGfEpVtlKBxexY3KYZhZtNuhBpQH/AVBLBwgWKU6fsAIAAHADAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABEAAAB0cmVlcy90MDBfMDIyLmJpbmNgYGBlYLBwLGFgZGC5qB/p4Adi/J7i56DJwMTAuj3X2U7gAwMDCwODhmPvttrdoT+C93xgYmDxVBKzf8VSu7s/r2W3AVQh/6EMkBzrRd5VdmcnPt5t7LB49wEgP+/2IqAhQEY4X6Zd0MzZe/pMJ+x5YqO0B2gD0OBpdtFgRkmYHchOljVNjmDlLAtr7OxaXY9Zh0/t2fuBkYG1Xs7LYeE+I5vV1tetga5k3Syu4yAAlGAxf67pkM/CvIf91qo9IIUy94Id/Pk9rA8lHrAGmdjldw5oNNgXFY5gHTf2RztMOcdmKbiXyQbivS2Ov3Pe7JZs2QfWUSsjaA9W+FmqzCGVqWt3gc9yG5CbPj4St2evc7G+tXSGDQBQSwcIv7+LRxgBAAA8AQAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAAVAAAAdHJlZXMvdDAwXzAyMl9hdXguYmluPZN9SFNRGMZfzallptl0S2uuTIIwYuracru7u2fn3msf5AdTK6NPwQgZqz/6UCMzKqyIZZ/+YRmLlKKQwhbSmRYWFUFZIUSUK0Kyf4zKECvsvdtdDzwcOL+H85773HsBAKajQciXocort99bxF5V/rRv7Rl0fr3VJsYgikUra7yS222SAUpcU6MLmad8ZtCS0OL88/mqYxqiOPQ01VC9RIbQJ1q1KZtZsvaxu78MTltMA5+AKBGdoJ4JWzopGHPl4aUu9tNmYDXpemexf7IoBVEqWlnDCp2nOMGlbzUwc0NcUNmik7d5M67L1WxY4wtl6J9B03IMrOB4Lqv211nlkRNWCyKrOjuiOgJN7+jK/bODSz/XsdO+Mm7QFs/nI0lTHZazgELoEDXaTjE+dQ37Pdzt6PzTaF+BqEh95vBzwBMCMERKJ8zB+c+fsW2PNbZLvTsLlG5N0Y4jBwoA3aTzIAl+J4VBbrBdGQkF6EK1a6UbuJ8hw/I7Uu2uHVyt+8D9R2MB2tlTLmrU96CJ9tz0UoJvK6QJUz1XfcXJfUx6RmKzbtAkRDPRSdH7eQIS+IrFkpY9XGvDce7tWT/RtF8UtIjS0dro9TZgDozCyNBe7mbvsj6D7xyZdAd4GyK7mo0oxQUdvLjKM8ytPnKU8zqm+P62owKHxKHOjvTSTcBnlRY8SAjWzJM40+0OIWDvohlIdOiM/+eVYn+p5MQjP2vxVQTX8UTYkfjDySuNqdmw9h0ToWtUzJkzac+v93Kvh2w0S6elWCoQtZtwL+4aCfSx0pt1E71P3xuZfX2muP3CZpqMaBY6OXo/a54E3i3ilUrJHvfYwhrXpon9D8eIHtFctD46t1ErQYhRc3NXUWWdn+tx/6J9uh6XS/kO1WxYXpOITdH5A2dYdq6Ha7bkEd/eIwQ3QVJnh+dO/MUt2eW4toQtvu7hygYq6BdPOslElIXOjJ7XpOS8wlRzHjuZXea4XFhBZd0NHn9CKFazEeW4lP5a2sftpS8cjvyNH4TD9cnCSiSr0P8AUEsHCFJp1MoGAwAA6AMAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAEQAAAHRyZWVzL3QwMF8wMjMuYmluY2BgYGVgsHAsYWBkYLmoH+ngB2L8nuLnoMnABJI6YCvwgYGBhYFBwrEuPGX39vKfez4AJW5vc7SrcmrbXXw7ebcBkL8919mupDoQLHeRd5Ud64Uzu3+/mbT7AJCfd3uRnQBIIpwv0+4fZ8+esycb98xiFtoDtAFo8DS7aDCjJMwOZCfLmiZHsHKWhTV2dkcLN1lf4Knd+4GRgbVezsvh4D0Fmx1bD1oDXcm6WVzHQQAowWL+XNPh1JXXu62OzNwDcewKRxnnYutlyo+tQSZ2+Z0DGg2WqHAE6WDdqeLucCJedPd8bztriI4ljmJXnu3+8isdrKNWRtAebPRnqTKHbVkVu6dPnGYD4rM+83VY8+2D9YFFUnsAUEsHCNW7lToXAQAAPAEAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAFQAAAHRyZWVzL3QwMF8wMjNfYXV4LmJpbj2TaUhUURTHT6NmojlmNqmBDIWlZYpj4zpv3nt37ntPMypLMzKbsoQWKRMRgqIxy75UTJShrQYSkh8Ui0TxTraIBi2WLZKVy4eCzBZbccnOzLzpwJ8L9/fnnnP+jwcA4IcC0aBAbrHSwYcw9qHfFDZwUyj9Ui3NQKRBOc+ZTl9JvAKwxlJ4JZhZz06yeCgVjtiPmb0QeaO8VEHeUgUGh2n5Xi1rzrSyF/fmCKvzrLwvolkoX/VNgDcERqOVkQsV7Ldey+quPudfXfPhtUiCUFrw1H0CIIiNtwLZs48XHM4bS2IBb8QzUfW6qraGgj5SCetdwqJ2BbL3P8fMxsZHqUmIktXe7ioiYOunUaMax92EHFZhz+J0pyfNBiTBqlwlJFAYLKdeGhtLqU9i4wNN5l8TB00piFLVnd17dON8L8lQ5yKH7egtFtvalworBw3ObOM9GbsfFAGayKGAOIdgWujaA+o1CQl4rFCzdmYD7ToFEm/Ibw1ZXPT09vam2haaTdZJPup38PHkbOuR4WuKPB6zjdNsWc5FdnaRtPHr1B9RAMrfM9/eFhns6dLEUD73mh7g1pddJU+Tq8UQRPNQIZ7xNqEP9GJioJXTREXcjrBXkYnsFj4NkUn1uktrgVpeKtE94BYvKuH2maf5jppKkUNiVnu7c2kiYE+W6/J+MMcqA7c2ulYsi6unOiTzUbr/763F/ILI3x1nWIZRcGzkibhz1neBdyamel3VMxfnmyuN+YVy6b9OckXTdbS3oF3EUIGo2bhyyd4hQ6hGXlwx0HaxK4hl+IZLU3usdDaiQNRsz3zJMTIUb5Wiyw2m3YWRbMwYLH37NEJCEYWhQj199fslGByQ2lra2o+/GzV91S6l+SceUwsiqnrd6+olgMP0FLWzvskgbnPMHXGd1EDwEmS1t6vvnym8UiyXq8LYhocbOKk1h14bDiHhiBagwj3v2Zy+YrGZLGBTRpP5yoocqsxv4PEnhHTV665YHKVbXHb+HFeceYdVfvYml57kChlIVqL+AVBLBwguAqm0AwMAAOgDAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABEAAAB0cmVlcy90MDBfMDI0LmJpbmNgYmD1nFRtl8HAwMDKwKDhqHWAkYHldoK/g+wBJpCIgZ3ABwYGFgYGCceOS567J+TJ7JZd4Ltb7cW3XQaMDKy9pmIOnHtj9zAwMbAcKpIGKwbq8nCcYbvXeoHDQusPQEUL+OIdfsVmW8e/XWHNADQ+4aKfQzSIUSrr5KDJADbew1EAqJTl4WU7Bx5Fv92RvxV3fwCaOUlFwH7Cy2m7K57a2kCcaAFUCJQIDRW2X8zquzv7mvduiAMrHFsfPzGf+WPjbpBjVE9utIMavcZRAKZiflyr9Rfxxj0gV/2QinFIPOu2R1/4HthVfPEVDnCFkXeVd3ErtIDdID9lp92tyBvWx5gP2wAAUEsHCItxI8MHAQAAMAEAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAFQAAAHRyZWVzL3QwMF8wMjRfYXV4LmJpbjWSa0gUURTHTw8fmau2Zm4SYVpqEaWt1uru1Z2Ze2e0F0kSISlFBVlKhLhZGZgtWj5KSq2sRBHKvoQFvnCmFnxkmZVmsV+ixQqijDRKkjbr7O7sgT/3w+8/53/PmQsA4I+C8EVSqa1a6u9cTVoLmuVR0S7EzlSyeYjmo1znApfPxjGYmRU7rzjljs9mcsdSZApofym42ELV4/JDM2EAVv5Dx5ysy2yUc6/VG7POGVP8ECWg/NSe4GigsP8jPbjpj6y1gnK27KLR/wnRByPSo1ynp+ooQDe3TnLK+so+Wf9aY3jsyDAmIklSsz0VycHErBjTEPDIupojkb8DzCXHXwibkASocueWnxehO19Mt+wgzkI9uc9lcunyE2EJIi1qibfd/i8UbHniXHU+GarNIHtSm8wt8cBtRrRF9bpr7xcGuu9MjgglXXG7SU1ym3D0QDFvQJSs7sQ1MxTvlEDbIBobJ+V3D/uNVZmfaFJCFPNB5Ivy8e45IUqCFQnixbz5itZxVZ7s30XHT5yiixEFohZ75/gRJsGUwE43O2XLjUTl69gboa9oWAhFtBQV6r0f9ZfAkc3axkHZePqZzPhyIcu5UkhBZFS97qrF/ws6/merSXmb+40cqR8UVmwN5EyIiJrtzk2/xWBqgNmjQLm9dra35O5wYpXmFA1DtAwV5u3XfZO5mpZHg+L7fE7OrijT20lQfCqiNNXr2fM9BqWHqCHocvJjS64y9u8ktcVNp5kRcepu3HvZvkYEu6/I+wyYqoOt8mjkAN17vYRqEAWhNN77hQSK4HhK37+8YNowYiW6UYVGSjl8OCKd67l7cw0zDJorqNgZQ6ZzVj361fOANn7O53lEgur11BAHtkHaU/pb+TtcSUZa4s13unby+CiBqdnuXKePCLCPt7yqlguWRaRGXzpD6ydizcsRRaCWe9tNdTAIWc/ax5/3auLWKDVNx2jdNguPH4Okej3lwPHtXKyhgnT1F6ZWau+l+fGH09KRZKD+A1BLBwjoqTYe9AIAAMADAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABEAAAB0cmVlcy90MDBfMDI1LmJpbmNgYGBlYLBwXMbAyMDyxNHPIZqBiYF1e66znSYDAwMLA4OGo8AHMEPC8eFi090vTvLs/sDIwMpjZOew11V0zxTnhD1AHSyeSmL2AkAJlvtNdg5zPS12P39nCVLIcpPR2WFSmfNuvRLz3SA73v+LcJAxANrxndfZLu68454PQDbrx5V2Jr8P7w7Ub9p9AMj3mrDITgAkcet2hp3Wr4Y9kzwL9pQmM4GtmqQy1S4azGDrB7oSyGh90QtWzpJQkW93/02ftd5ifWuQKwUPhDp8FV23e/30R3uAlrPuswx2ALmStVnU2uHS/ZW7Z4sHgxUyFYU5OPiE2dwy/W0NMvF2zTlYAFQ4gv11Y3+0w/MYaYuCDbetIQGyx3Hp1wW7N/YuAuswF5OABMBnqTIH/7eeu8X9am1ARi9TsnZgCDA02/f3mQ0AUEsHCNUgMAFDAQAAbgEAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAFQAAAHRyZWVzL3QwMF8wMjVfYXV4LmJpblWTaUwUZxjHX0CulUvKLVAk0lRaBEHpwu7szM68syP3USzVktLYok0lio1Ji0GDR3SJGjFSCKHYtfSgHywbWCrgOwuosfWDhi+gDZJu0a5g8Qh4IRvbZ2bfNfFJ/nmT+f3nueYdhBAKBiFjpoQq66Rzby+Q/A9t+oHzNo4/1yZ6AfIGKae/4vsoVUIjLhzzcIZYb26Xw6dDuZaJB6wPoGUgHyr0yc8YJaVIn66PkKvnnOTIdg03dWmtTskRQHMpOZGjFcObwvAb06T273tyzJWDusO/W9hQQGEg5XRHC/gGjH8G3SZbXT3kwr/B2gFHnk4PhKFedzTyCJn5tLYhmUkNso+NxrFNiZGsAQhLa6t1nyTDHBpcPeIkp28skPofO3PfCW3SrgAUDlrhSXfXR0J1z8VlVU5i+WKGNHyToR1/JOZyysqoVw3OD/prNmZXPCY5Zf+Ql0XO7PkXp9KhGSTQ3Xir806Dr0Ro+bVI5s865cvF29hD1q8NgYA0oMBXc9TyqHESZwvzckoplme/rWHiO0LZXCARVO66WRg5DmD0Yo+cciFZnh0aNtxdatBDESTSnOq86A9oZYLPOBBtL3d9L5vmLbmdtqbMSCA6UOSruhyMZeX7tavsS2lRduXJoH9vlglOic6g3oOaKAnd6TOl/5fKtExnkY7C33BBX5noC8gP5Ou5B+0hEmpcxNv2v8Uc37KPse004x7NeWE5oCDQck9/HPhQL+9nWMP8cHSX/VD1Uezv+IuNBhQDiva0d+aJCZk7xKjuTGbx2KR+fMNVYdPEGrwRUB71usMMczTzX3Zslq+dOWFPutXOsNYGNh9IAa3t3ksmRo0WHLt4Ve83183U69KEsTJWiAUSB4p97V4l4yuVFfLoAx9mR2+9cSk7QSgEUkS97tAIiDuJux/6Grq9Opl815jRMb5aKAZSQnej7sVaY0Ix3qa9C9cHVwcskNmuWFETV42VfzEEuf9JtT/tuybkqBHrO+P15W3PSG1AuHjfdo9fCSgetNJTtiECfDJetf5ijqm4idkX8RRrA/qFUkBl1KuGIweuRQYOycqTE9cVMEu3v+LDKyS+HND7tLZa1+wFnzyMD/llkaTVJhnmTlfhsd3BxgRAiaAET75CxVdn7PrcRa6XJhqm3qzCYbqf2ApAm6iX7g++h8WIrFPvtX7cbFj73WfckWenuA+AVIL+B1BLBwghMEkqhwMAAIgEAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABEAAAB0cmVlcy90MDBfMDI2LmJpbmNgYGBlYLBw7GVgZGB54ujn4MTAxMC6PfewrcAHBgYWBgYJRz9N9d3TuW7vAUncNnO2g0poOJ50U979O499zwcmBpbtMmL20ipqu39O0N8NMur9vwgHGQOgju+8znZXc/VAilhZP660E03asFsnNGv3ASDfa8IioGlAxq3bGXabNTL2mDlF7GHd/Go30CqWSSpT7aJBDM997XaaIAafehtYOcvEr3l2PxY2WK9Jr7b6ALQsIifd4Vbolz2XBPP2Ai1nfV4T4iAAlGDlDzF0eHhyyh6J/XLWEFe3OLb5/rDW4rxqBVI4r9zJAWz0Z11Be7COuKVWDlznZuxenqOyG8RvyDV0WPcj12azv5E1A9iECkeQQpavfjEO3N/PWhxo2Q01eotj1oGJu6d7eVoDAFBLBwgQsXSSLwEAAFUBAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABUAAAB0cmVlcy90MDBfMDI2X2F1eC5iaW49k2tIFFEUx49prlZWpq5ruWWSPeyLZKbuzuy87uyolQ9KtDKywohMM+hFD9gkU0GiB5VZllmQ9jBDC1pnVpOKSsMEy8gQS4u+SE9JcKHOzM564M+F+/tz7j3n3AsAMB0F3AoJckqknv4P8t6Meqoo+wo7YL0o+iCaglLXqapvU6wEHW7ivtEr727MVL77+7LB6d2MLyI/lK/uBfjIw+gyyXpqveIw9cohfe3Mkf6fNgOSAJQBvPGUB2C567/fyNe+VrjUnc2VW5iVuCboXi1f3SUCUTFSTbVbbuvrkd8WDNrGmsKtsxEFo2Z70w1VEgA3f9TULT9Oa1TyRn8lZhXuopMQJeteLcaisY5pJPpej5y0f0BOeXbOMnJoe5IFkVWvZYqW7zPmyxAWmJOVhWd6lE46k2FKUm2BiKahAifr2M2DY4CkBX5QKprilNErBbSQamBWIQnRpQUbT2DoOKk5nKdY989Rhp3tNqv7KEUhovWcnv69wL684+9uDHAN3z+rnN9QailsMsaHIklEhU6ey3IAzXxJRLBr2zKDy7trQzF6DVqvC4wSjLTYb32JoE9+WSiP+z0iYcVZojpTf3226uzgsEGC5mKx5VUIXZqTRX+6uYXkxM8g6huZob8V7X656IMA/lhlGN3Z3+WS+vLIm781rBFROMrovcjVMTucThEPvIqiu6LM1NuEl4Iz9rvAqk9O93qimVNraXhY7VrUFdoeNpLNDk3dymATQNDP1s51lBP4ESu2uu9QB8zH6ebOfUJ9dq1gQhSBMk3mq+Agv4xscCe7BoufU7HjuWxaY4mAwwRR92qR7y8CO4fsi7tMO2PKqLOWM0JCQytnRyTpvdH6EtcgwvtKe+Ryg+IsSm6Lub2UHDEsEYMQzUQFee+XfxPT/+EXm2Yp206l0+uGo8m3rw+4uYjmoeZOjs0ogmOFWOXDKL3lr+WdPmVCy8EOIQVRqu71RAen/pGitlDbteFBSqqqY5215VwaktX62Z7/wdshql40P5xFheROyIXW+eKFIIMQiciMivSmu7vEDnX9ZIfTYflRsIs+t8dP/OfXLaxBtFb3evpyAusoJmVxqxS6doJ6stTCl1MNfDqiDNR/UEsHCB76L+RDAwAAOAQAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAEQAAAHRyZWVzL3QwMF8wMjcuYmluY2BgYGVgsHDsZWBkYHni6OfgxMDEwLo997CtwAcGBhYGBgnHn4Viu5WUj+4BSdw2c7aDSmg4vvwktPvw8c+7PzAxsGyXEbN/1ia6u4pJbjfIqPf/IhxkDIA6vvM62xX9kdkDVMTK+nGl3Zp983Y7PgvafQDI95qwCGgakHHrdoZd3seAPf8WOu3ZYXV5N9AqlkkqU+2igUaxzit3ctAEiSi2hICVs/zYJ2EX+rbHuqlN3voDUIUgh4nDnlnMe76sU7MEKfxxrx2isGZ/q52qcby13xGhvSCFfdeDHTg+fLb6/WanNUjh7ZpzdpoMYO9UOAoAVbDc2B/twJH82eL5903WEH8ucUw6Nn33679aYB3mYhL2YIWfpcocrhzX2t3Mk2wDMnqZkrVD7qFbOz/anbcBAFBLBwhfj0V+MwEAAFUBAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABUAAAB0cmVlcy90MDBfMDI3X2F1eC5iaW49kgtMVFcQhmd3RdldoEKQlxoptQ2CqSsILsve97l7q9DiI5SkEES32yA0hhgf1KiFaoIa4ouGUqKpEROTJsA2iEQ4lxKCEUJaWxXiAy3ZakCJTSviI2Li7OVsJ/lzk/v9Z2bOzAEAsKNAytCgqErbMTNA82JPu0+Y6kTPaKNqQmRGBb9hQV9xmgZ9s8TRSmnbcK5+a+qJIBX6BQuieSgL8wKMyfB0hfZ7vqBfXEXps7N+ob5hiF+AJBy1AEIxIAOI0t4oSqcq9/T2F3GO4qNbhDVIspjXyHfuRwLJH2rLP/+bKhE99MvLV/j2g9bcaEQxqOhQuvGjBGBWbmnvondLmvTZ+Om1qysrOCeiHOY1YiYF72EjP01204RDV2l9c4Or9YTX6UKUy+5iNvIFMF+BktX8kV5xvVtfWMoLm9M+4K2IbCjr//f4Woaae+R47oC+z7JM/++Mj4urByEbSSyTEWImgfFaUrTDoz++btEnu3/lx97sd7sRcSzn3PwGcS6jsqlqRu+Yd1jfnr452BosQq1lX5ZQAvDLjxrNvQfWT+uhvzxKYHcwZu2L0+BhhydQa+NeX4qmBe2dxOvYqAZ3Op/t1mKclFQotGmxG8+74797j6vOrFb+bGgkwTcSwd6K0Z/4lkDfYaJNx3C3K1bTmLF+6f6mUiUOUTwqLtRIzRkCNRL5OdXBpZRfc/eXBoQ7ZR2SGKzEvHPxvgLiVlJZe0H/5Ys/XMeuJsq3X2QrOARQWG2jbsYrD/R51ZZrVu7+TolzlaST/gsmkoAoEZUQSvfPSw++Hvnlt3Zu2+6u3oy/UkmK4wcRlwkq886Nz0vg3zQ1bE+TO6e8nEvKyVPMH59V8DBobDbGXPw+DySYPW3ZdTm3sn6jkVqiumu4lEQiikJFhvpzrvTAuE+t77K7N00M0pMPotWV1gk5CdFiVFKo7v5Y9Onk0dImV6BzC7fB8oI4wzuVTxCtY14j/MkqlB0jb7o4/St9xG3L7JGSl/nl9YjyWG2j7hETtrxQjrDepN+HRfG+shLyQLRLSxAtRS0J5csP+qqkoW9G6I2JSL7ueTFpHmwR8hF9yrxscbiec1L1lSM9RXW1/ETAK97oOyV+hqQA9Q5QSwcIujeDyUgDAAA4BAAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAARAAAAdHJlZXMvdDAwXzAyOC5iaW5jYGBgZWCwcOxlYGRgeeLo5+DEwMTAuj33sK3ABwYGFgYGCcfJaey7s3M27gFJ3DZztoNKaDiyOrLs/pt2e/cHJgaW7TJi9kyT2XbnmfLtBhn1/l+Eg4wBUMd3Xme7WZ68e4CKWFk/rrQ7d69vt9V5290HgHyvCYuApgEZt25n2NXy2OxJ0dbfYy+9bzfQKpZJKlPtokGMbT/D7DRBjODfjmDlLGmf7eyi74dYzzfK2vuBkYG1Xs7LYdKuD9abxAqtQQoz57dDFO6XbLMzDXhrJSzOshfi6hbHyHVzrYVkDayArmSdV+7kADb6s66gvQDIqLilVg6vLrfsdpLlBvmL9X6esL2CeK1NlIa1NQPYhApHkEKWFKcUh0O1fyx11GVsQPyoynKHO8ahu3stzlgDAFBLBwh57gPwMQEAAFUBAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABUAAAB0cmVlcy90MDBfMDI4X2F1eC5iaW49kwlIFGEUx5/HerSZmrZqbaVSknasrZXbOrNzfTNjpyZW0GVRUmRJgkVQkBVpCxHRYa3ZpRYrpWxEBTVTpkUHZRIdUhJSCkkXdmxFG/Z2nPXBn4Hv9+dd3zcAAEYUcFYZlm6R5wiXlabte6kJ20rY9ZXVYhCiYJT/a/D7lmfI0OIjsU8bFXNourq7/zkT1ORiQhCFokJ0L0AXD5/T5arJU1TTqkbl6rwGRvK6HeFIIlDhEIi7PADL2dhGpfL+ylv+kxXOImYmfmfpXi3fWReB5IlyYc1j5cVSt1I4cNJxPc1nj0EUi4oJpOt2EgAfLy06r6xKdqo77N+zp5VspGcjsuteLX6m4hzDSGu2W3nYelmxnT5iz3CuteUgovRZgrV87zBfnpDZP0qNS3Grbe8tzN/0UEckomGoyKE5NvFQ8YZArUe9aY5W+2uL6XVTvY5sJHG6tGCzCHTvJnuqrWqk8Fn5cOO2w+jbSdGIHHrOwf09wL285Nt7utTous1qXsxke/zivdPjkdhQ8UN1WQ7Aw9dGf1Rp72vVf9L3y2ll/ESfQdt1sUmGnitSVv4f6m1qiPKv7CrJGsgX/Xcapt+t/+6gokOCozYpyRhOt655RG09d48fMDQS/xsZrr8Vrb/S6xIcyhXVfyF00OqxtLzhDH8p7ARnQpSAMgXaW4Y+SOZcRgNdXzTy9nL2GH/z2TUGmwZe9w5GtABnGbG2vJq2NJtoizzAPHVVcgISotfW6nb8EcFTKlrL91Om6Rl0b7NIarxGkogoCZUYSNfyW8TXw6cUHKU6zedvTdknkNTM4ywegqR7tejIFaEigXxNEunCCV05S6LCSH3GNU5GlKvvRttLpluETqcUYfygXKj5dONV1STyojlNjEI0AhUV6G91A5b4wa+weJUZryja/jKVbL/o4UYjGoMaPXRtJqxrFXsj0tTDPU3KAdgnnNrcIsxBNFf3DsZ+XNUzvnzaOEfZtz7q5J09rG/8QW4ekvl67cH/g5cguU78XRBMtantSl7iOLGsyCCYEY1FmQPpunNw/E7B1X4q51dmG136JEG8UNXKL0C0UPdq4T6G/d0XNrIG1SPtottKvvCWI1O5PET5qP9QSwcIeq4m8EIDAAA4BAAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAARAAAAdHJlZXMvdDAwXzAyOS5iaW5jYGBgZWCwcJzJwMjAYucb7OAHYuRH+jloMjCBpA7YCnxgYGBhYJBwXLzj866EdfP3fABK3N7maJcaILybMevTLgMgf5JKpp31cR6wnN6sxXbMcpq7r+823w00hGV77mE7sGli8kV2UNM0HP9k/LUssNME61heP8mOd7nsHiGGM7th8pv2fNrVJrEabMIklal20UCHsc4rdwI7jEWxJQRoFJDxY5+E3arEDGuX9R+sPgBVfG3XcZhsrLyHteLyTpDCbdf6IAqjZ/fYmbtaWns5FO0BKVwoF+wQ4TrX6pD+PmuQwts154CuBEp0LbZ2EACp0KlWcQhYL7NnvV0w1FUVjr0xO6y43ZnArupQE7QHKxSQMHbI3D9191t2zt1APgvrM18HIa191uHtAnsAUEsHCN80+a8tAQAAYQEAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAFQAAAHRyZWVzL3QwMF8wMjlfYXV4LmJpbk2Sa0ybZRTHj+VOwQEGysUsCwGjjllL2ID2ffvenrcveClF0uAuqSOjuA8wjf2AJEQI4gdENj9I6YAxYqILmnARSMj6vNiAi2YqXviyMMMQWSYIM7pgRMV42j4l/pN/nuT5nZzznHMeAIA0NEilGtS/qp3uuUrTPmzmgm014iW7X30IkQEdPhPDcVazBiGJEO8QvTCs6Q8O3xcq1suEOETx6DhmOP2kBmtD5I/lADVYdumJokXh8wSrPQlRMjqJ5QT4QYadJ7S9B/m6diFAb7gGhdrei/ZDSDLQhyCmz2QAUWqqC9C9y9q85bdCy5mel4QKJJUsNqLRywSOFGtvFM1RsWuADu28aa8a3rRaEdlY7ajOYL5+kro3oX+TuEbDN6GVD6zH8cxkjmpOAXCSbu8y/fqjuzR2y6H5//UMoWQC0KiUbLXq/7x2jQ4Iq3ZLciOXgigVnXLQ77AMnVtKsUei7/a9o/f9+zd/fWqBz0LyCDrroG53pN+RhhFb2sVlveK9PptY6XrajkRgsVFNYr555duMG7oJOnRxYqS09nEnJ4ZXympHVY99uKRfZwfotVW3bpSnLOHbE+hytuPwTsCbo8HGtGOpYY3rMW4Hp8yz5Ox3LjWB7T8h1i9IKrhTtQ6Tj2s5ucmVB1oVetRPjOw/GWP9ivsEQt3k+N42t+hS6ZJvQao77FGyEeWgs2PP6xwm0CkRI5/Jv93i5xY964LfPC3hEEBhsVF9IoPoI6/DV7rhaHfw0k9XpdJz1QoOH1RWO1J316ABbJNXuta575ss/MhQPQkIY4oJUS7aFEvXEYmT3/Lf48znTfPNN92k8dOXRQcijcVGZcL3jZJxP+Gmgy18c1uWsvKYoFQhqWazicxl0uuAXIPjTqFm7TePU09Cnmrs9ZB0RA+j02PvC1ECuU7HYHu6Xv/CFdv9v04pR8qMah6ifHTeQV38p2uzpOj2on4sKV7flQdF5+9u5Rkkz7LYiG5l45Mb1ElfE7d0633q+DFOtdVtyM8hep7VjtT9cx/HpCkF569Tr6+Q37G7iSGYKRcgehRdEMsnYr8Zv6iK2ab/XP0x/TJklVfaq4kTUQ2LjeopXM8Xkn+mhT82NqOPnjLIJfkvii4ktej/AFBLBwhSmSHVUQMAAGAEAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABEAAAB0cmVlcy90MDBfMDMwLmJpbmNgYmD1nFRtV8LAwMDKwKDhaHaAkYHldoK/gyYDUOqJhZ+twAcGBhYGBg7HhMjbu4xbo60/ACUs/fTt1GZc2MXz7NauDYJPLA0YGVh7TcUcnvh67GEAsn/JmzgIfAAa9dfY2EGOl906ufTwHiCfNeK0qcPDORw2tjrq1kCFLApcGQ7RIMYpdpCdQIaRv5MD1E4HxxbLW7vWbOXfDTJqioyPw0HnxF1yV2N2M4DlWxyhCiscV0U1WXXdYdoDclzX3D67j0vj9yQXcOyG+KvDUcYAKMHQ0GJ3/FvjXpBpWlsLHCofHbZOSI21gShaATQNpIhhht0HkaN7dKeKgUwDmr7F7mFUu/XX2Uw2AFBLBwjAv1MpCwEAAC8BAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABUAAAB0cmVlcy90MDBfMDMwX2F1eC5iaW5NkntIk1EUwE/qNDcfzVmbj0RNsuzldKVu39V9z2WUrKjoMVpR9CKtP1ZkWegyH6RWZH9U/wiChRAVkfa4ewRGkMSWkEQvrCQjysrI1CA6275JB358cH/nu+fccy8AQCwC2lhLrbfFknDvFsOkLKGqkz6+YEGzOANVBBL4RgXyvKwI45PSaFYd5Rw+xp88QIoTnvKRso+UgQ4iAtRzzt56mnCmzdRuO0+K21tNMaj0SIy8J4Cfg8wiMcu6iGbtbKC63GYiLhwtSUQzC0mEcPRwAFb2tbaZmgtjSfrXxcsm3OnEgGa5nBuMoWYBtg8LOruTPvY10UMTY0W2hkrDClRF4TMEI5OF95OSbceUS/Hcxzz4FW3eP9zPF6BRyoT6G+Dh8rjEkDrTSN4Ac3qkk/3e8pBXo0lC1OHtavt4gBfsbv81hq5zuN/0b2Pj7lwxF6MqkXND0cHB1C8pta+brPntZzbYo8x/dnh5IxqTPOvAbKCs0QL5+eKBOaupI0ZDtKlOUajayitQRSOK8JyPVVhgZq307LCTJhm77t9cPywMvlWLKlRxiCp8Dn22BXL00tq7bbQ1YxGdN98qnNhzVNCgSkY04fYcSgt8coljO5uorvM2Lb760fgo3SowqIicG4zkHAlgrbDpSRwtVChdvbZtgs3m40oDrcu1g3XNmyUwp4m6PrspI+0drSqKF3NHznGzUc1BZk/XLZfAWyNs+JHNXL/Q6drVohJ3RV1izahYOTcUiTxYk8Sexyp3TUs3rSwVWH/jPg4fB/DybCKC92EVIHNC8HSdIge39DHlg+PcxbluLh5VAhL//zuACqHake2pVlwknqEuw4qfX7hCNDqZ0P3mCfgnr33lIDa7sjSJfcV9/hDB4iKI8p6h93KcB+8L4duqGe6XZSaiJGfZmRtbuRQ0qUjKdN292DLLL95yxH3USF1fleNm9Q0Ni0MFi5wbjCEPlrDwl/ULyRjXSaoMS7m/LwfZlajKkX9QSwcI6cPYdusCAADAAwAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAARAAAAdHJlZXMvdDAwXzAzMS5iaW5jYGBgZWCwcFzGwMjA8sTRz8GfgYmBdXvuYVvZAwwMLAwMEo4CH8CMDw5cWUd3HSi+uesh78Q9IFW3zZztoJIajkp7du/aqHNs9wegOfeb7ByuXjm865Le2V0gc9//i3CQMQDq+M7rbCci+Gb3ByB7TW2B3Sx2Z8sJ+9x3g0zzmrAIaBqQcet2ht3mepk97i38e4B8FhmNi3ZJX2bu3mM3F6SQZZLKVLtoEMNzX7udJojBp94G1soy8Wue3esmKWvntw6WIIdE5KQ7ZM2cs0d2v9FeoENYn9eEOAgAJVivm+o73Ng3e0/z6yNWEB+0OBrLLLe+waxuBTLxds05oNFAhV2LrR3ARhtvPmx3Ip9/t6Ho7N0QHRWOx5QXWc2de34XSIe5mIQ9yGiWz1JlDi4NX3cF+DrbgKxapmTt8Opn664YhR02AFBLBwhhTW9+RgEAAG4BAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABUAAAB0cmVlcy90MDBfMDMxX2F1eC5iaW5Vk39MU1cUx48ilMqYgqIgwjRG+WGWdJuKlPf6ft3XJ8ik+COgTIVIzbIxUoJicTPpXAaog1mMP0h0a9zYPxJsRIXIfbVaTPy1hcXMLeqiQ8KM2wzEYfBHyE5fb012km9u3v18c849594HAJCIAuldDcpc2onQF/ROvcKd9KniheBhdQqiqajwGhf2VeRqEHxF3Ica6ZP5iXqWEBTuFm8VYhBNQ8UwP8A9Gf7J0ezVJr3+tpt+2d4unA59bzMhiUeZWE6AARlAlFydn9GNpcsDQxNL871HNgszkOShZkA0jqCvT/pqoIGWP2qm4Z2/foH8fFytLKeRz9dBYMFibUnacTo02UBHRo7ZLK4DBUmIklFJ0XQP9hGAV/LSUx/R33t36ULm07ySqhq+ABHHvEaMx2pQ/lw1X99BFd5DvV1W60Lr3nwekY31bPT7YAjzlSgvzrykj9379J2VZuEtSy9vRjQdZX7dR40Mnruka/8h3b9ulCYVFvPjj0O2lUhmM0XCLUPwFvFce2pd1v3c6Ld5+DubgKvIckbmdxXnclu+V3ZO/3BM1It+fts674WYl4JkDirldT5RAvDLvm9D+kZnjw6OTEvvO43v4SbIzBsJip8O6dM6Uf+4jejRXQVFWK/huwPnHA2Ge+wr4vq4TdqF/l0tZ0lrk0ONZe8klr0F2G3SwF+rbrd1c8tr4nnVs5mEXAkkAdEbqIRoH+Xog3j5dKefa7S0BXzeCrJi4rA4F1Eqam70IN+M2+HgKvWHRZc4b/aYVSi7qjxKf6KoiOzMGwm/FO75ykUlMFx7P9Dy9QZxcqJKwCKwitU26nqaCYzmqmvHHFz29Ry+dc8OZcRxXElDNA+V9r/5NZG2bjlQvaSB2zCZKPZfqVMKkRQxrxGVcSqIyUR86OAHBwYLZmd5lbrCU9JqRMVsNsZc/E47pE6137T7rBm722nTT6nq+LYtJPwvvgmRf9I4X5ASSF1j33r+b1qZ2FHgHd2kzDQlqOmI5qPSo3WDLXg9g0r/6h66546kL3ZalDFnjvw+ojXMa8RvKTimKrWvq4jbe/lzWvprjFr34x9yCSIHq23UbZmCvpnyQPVRuuWTZ/zRWR+Q1ulmKQNRJiojmq847HNJua4O2rngX/7WmQqyPvmEUIpoLfNGwoPz80nV7ixan73d9ufQNvFG7UFxHZL1qP8AUEsHCNZbwJ9/AwAAiAQAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAEQAAAHRyZWVzL3QwMF8wMzIuYmluY2BgYGVgsHDczMDIwPLE0c/Bn4GJgXV77mFb2QMMDCwMDBKOAh/AjA8ONms27vq15fCuup6mPSBVt82c7aCSGo7y31bsyo3etPsD0Jz7TXYOPfYbdimv2rELZO77fxEOmiAd9zesBOpgYmAJ7plkZ+4ttVtp2e7dH8BO0HA80bN/V9hz8d0ghV4TFoEVst66nWEXepNnj4MW4x6QRhmNi3aq/V27nVt7QQpZPCettYsGMU6WT7bTZAA7ZgXMyRWOM2RErAOidoO15t0Os/PewGt9m6vZGmTHe73pMOcvcXz/U2CPgM2FHRD+Gkfn0v+WL1sPWIOc75RXDnQ+IwNr+UtLB7DzrZwF7X/4pe7W9D1mDeJntYjbH12Qt+vRswk2IMc8/rkLaDRQh9jvaofZNux7cst/W0P8ecTxjLK9DUvRLhsAUEsHCC+Q+1hEAQAAewEAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAFQAAAHRyZWVzL3QwMF8wMzJfYXV4LmJpbk2TC0xTZxTHjw/GakGGiOgKE1eNmUioOKTQ+75fe5lIwbcZikWdD5ypiyiLryi+Ipq4JgxFHUxQGbo4H7DA9l3EhOCDmOCDLerASjLUTBsdGjMlunPb28aT/HuT8/vfc77v3FMAgOEoEFMVmL9W6Zu8hoqPUphlN1IEU+X39kGIBqO05weaL3+SAq0DZFaVi96Ht3TP1PP8Nz0Ofgiioaghuh/gLwmefqZsbeinn79YTMMv7+NdSfu4cCQfosL1mgBtEoAgni9cSo+mmFtq280ZnopFfBSSdFQUBKMCfU1idlwBtdYUUy3ztAsyrPjM0Gv66/1YSSBxgmLYsp92ZBfQ+pLtXNWdNbZoRCNQ0cFy3r0EYECqmzqbZv1boC6J60/PKvyazURk073+eBmmwIL/7O7chfTn28vp2NrMzBHW0gwGEfvencHbi/Vy5Y17eim/rkTNtw/ibxWWswZEw1CG0H0lAt7tZGBnjFqy8BdafaiDg39mMDFIRqJign23vZBh2wE5rKeVnjpQpDIVhNPS2g+vewMxXwZwktduN016oNK2iyctWlbQPqneO9D3Cs7vD2ljWq0afTJZ9bZHZLrc8emxSEahYkP1BHztrHQ66qzaWXxMDWbxZZB1byAopvJEX2qyWt5n8fvKGndZcAhg13cg3L8vaQo8W+1Ytd7D9DVMoZt6ptmTtjwkYfo+hQXnVzhKgc5XdnLsBNNsbrHZ8hvI4GnNxIgoAmUM3uPLVgd0LnD8Oc/DGGuuMpfKz5FEckaMQzQaFRc8Xg11APjkFnMz87elqOXd6zqSnMNKmARF9/pjc5oD8iLtBfHnGM91M5s67ij/5KtqMQvRF3rvwPzKZfjOZ78nb1YPPjAwFq5RGDmniYxB8jFqTGguOTimX6Uia6NaNqH0t9W+dv7E+JXCdCTZujewfz04pjfy9Ppq29K6teySaxdIQptRmqFV0Gfjn4uryKF9u14DQ7tLT7PDuvtIZc4OIRIC/9vI4PmEbgJNTofpd1Bl50f0zafjZFP1TWJCFI8yhc7XhZ9op5Q/M0ot9paw95JjZFPEPNGJJFf3+mOZE/v+JG4aH0sPJ6Zx13w3SLGpUshDNFPvHZhLKe5BhHScf8VsqLJxj1f080cOd/EJSD5BJYT6HsK9skqXjPXq8Uk/sM876nlPmZubhWS27g2ES9T6XnziY3cPX8XdndjKn/l2BzsHyVzU/1BLBwigLcvrkwMAALAEAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABEAAAB0cmVlcy90MDBfMDMzLmJpbmNgYGBlYLBwXMbAyMDyxNHPwZ+BiYF1e+5hW9kDDAwsDAwSjgIfwIwPDheez9/1UGnDrkd/svaAVN02c7aDSmo4bhWYsau6dcHuD0Bz7jfZOcyYP2/XLqNlu0Dmvv8X4SBjANTxndfZ7vy+M7s/ANlragvsThtdtuwuUdwNMs1rwiKgaUDGrdsZdkbtf3c71L8AKWSR0bhox5dRuXvtnjqQQhbPSWvtooHGss4rd3LQBGllYAgBa2VhSJCwY1+hbF38pdQK6BDWjuNyDncyqvacOrByFwPYoStg3qlwnNnGZ83xwmwPWCNDhJ0B13+r/Kgca5CLxU+kAI0GK9wC1AE06oGupUO+lPnuT9bRu0A6li2+bdcX4Ldnyh3J3QzgQKxwBDvfPWKfHefEZVYLZqbaQKza47jGRHJ3Tf5+awBQSwcIxPb/Oj8BAABuAQAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAAVAAAAdHJlZXMvdDAwXzAzM19hdXguYmluPZN7TFNXHMd/DiqWDlscrmDBR3TGoW7TpEDpbXvP6bn38uhWFMimIhlqjIsscw+Df5BRQHTuDyfER1BkZENizOJ8ZTTm3MIcU/AR35qAcUWbbMuemTPbkhL34/aUX/LNyb2fb76/+zvnXACADBSQlRq8uU0r2F7NYdVcaTTukBuCB5RpiJ5DTa7TJ33r8jUYjDP7kjK+4XCM2273+f7emu9LQZSKShF+gAcUfntZ660e4/G9pTxd3eVLidZ705DMQKWJTIAhCiCT870BnvFwVuSVhXmu9oPrfVYkhSgrJOsg+sJkaFzjnUtr+OSbX+6Cy4Vrscg08no6Gcx/SbONN/LUzBL+2b81Xkt3wJ2JaBYqMxkX3cMA4vRxlpeP9pXo0QVPCgN19R43Ikl4jXpq0uCt/5SPNZVvGQjyGz3FxZS0uDyIvGJmY97oI8wL+iujV/iuc7W6OzvmtdZt85gRpaPMU3PUUwiNsdbfm/Si3d9ya2nAk/9ut7cISZZQonZQGLzNBp61uk/eHDHmveVv8/pwlUVmYv+GcV/u0arHHfrxklz9kC3myu2fKJiN5EXU7Kk8mQCcok0fdeufBNv1ifefrDCOHUWFN1EcHyuIedyh/+qcp89Zd93w+VFMzJpm3AOnBn9uVft+bpGO/jGPH/uwQHm66UdmEvfEJO4CHO9QYPpCzbN3tOj0nnapLSONOY9kKRZEz6MsyTnkCQanFiv/XDoiPfzqHW5edIGMnABmR5SNsic/L9TFIESYueOqNBzOkUL3H/maZpwlCiJVeBM1TPAeKJ8250bir1Vxx906OVr5zK8hKRG9jb6Nd1SYv1HtNDdIQ/y8VLjTpvwUaaY5iOagcpJxD0Yw/gTzLTkjWb6I6W/H05Ub01ppKaIy4TWq0anCvgKldvPnUlv4Bc/KBV2+XnMjLUcUEHtj7Eu8VgU5yKrXSPzkoV7pm+/HWP/GMJ38F2dC4p80vm+oBvvO9Dvsr/KxD7i+2TbKvrxYThyIclGOZN+emwz2UdUyHuMNJjM3XbP7+1IvsdcRvSG8iYrg+Up0zV8QCVcO8q5sEzlwtUUOIqkQvRP3ajke+SJ2tPZrz+n0Inc7XUbLvpNpHpK5qLypvP2Yd5GWOyuk1JDVG7/QQaJkkKxCslp4E/UD5q32328e4GvL3/Nssh8j/ZfvkEokVaj/AVBLBwgIN6fQfAMAAIgEAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABEAAAB0cmVlcy90MDBfMDM0LmJpbmNgYGBlYLBw3MzAyMDyxNHPwZ+BiYF1e+5hW9kDDAwsDAwSjgIfwIwPDtav+nedbp23y6g2eA9I1W0zZzuopIbjtdsdu5QqJuz+ADTnfpOdw9VDfbv4pkzdBTL3/b8IB02QjvsbVgJ1MDGwBPdMsgs2/7Jr4/kFuz+AnaDhOEOqZ9cmpY+7QAq9JiwCK2S9dTvD7oHOk93B9hd3gzTKaFy0cyhP2J3hnLobqJDFc9Jau2igHazzyp0gdjAwhEDsYNCwtvvEedFKrWWfNcSVHo46cWI7P0bq7GYA81fA/Fbh+NyVwXrhXJU9II2rV1nZHea5avVtuZ01yPl9YVEOsgeAEkbPFOwFgB5k/chn4rDYKGN35422XfP3LLcBSRY+ZLcHO/kg81a7a2/Td7dxpVhpmDLbAgBQSwcICGWmwTYBAABjAQAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAAVAAAAdHJlZXMvdDAwXzAzNF9hdXguYmluTZN5SFRRFMZPueU6jmu2ToTZro3rjG/evOW+eTaVZlSWk2IIRbRS/VFgoLbQRhs22QZTikoiamha3SctI5WmCJVRCEkL9U9RpEZl1JmZN0MXPgbO75vvvHvuvQAAESjg9TIU7JJbp3E0uiyCUTaEc/ujzksTEE1EuX4DXT7bfBnujZO3X9NpYlcf/XH5qrlJl2D2Q+SP8lP9AEMCfJ4nN23qpnGb0+nDgQpzuHUZG4RkEipIzQRwCgAc/3pRFjUv9u96/iDecMZeZNYgSUVpwLvs6Ovke96nUlOShdo6xJRPL8CQgSRTzXTnOS4S0CXKtguldKUmjRZmseyP1iXZWkRRKK03bvgYARgXnkYtoAvsaUrBzO+ZORu3mbIQGVSve40GyLDup3Rij55qfxqp3mE0BgmVBiOi7P/2DMNvMS9PnHygg5KdOYrz8yAb1y6YghGFoIJ9+xUIDFcQw5sRWl97jI5132Bv/05kopHEoKK9fctHRCg/LVZdr6ZX/ZYqMz7NY11lBmVSvZ5VIALkEnZWMm1ut9PSmuZkV9VlNqu9PX0f4/wGhb/6Q0pvfZgy2t5pCOb6MmKRxKFifXkcD9AihF05pVQ9qlR8VdcVUb2eRTFvJX/UGqbMsmp8PiyCqN6BIPd9SZfh61bL0dqtDPdNQ0t1GdJm6SMJUO9TgHd+DeckCJwtH7/pzPr4u5JpHwskDfkxUiiiMFSodx/cHwItc6RfqSeZ/txVtG/sPv+hFkg8osmoeN8Hj+F5lAiZdZVMSuIOU+DqVl7r/GPGIkiq1zPnNjyPanJr9O6d7bte0qHkk6Kmd4toQSSrvd19y55bQFdqKVxTzORFNjBr2UjJWl4hJCCagkrw5g09wb/eICUFDiaku08pGQ+RBiYcFHIQLVW9nvHFW+CxXfqVdJgZyf/CvHtyyLziTplgRbRMnY37HTk4C3CLpNXNAh3cU5NdXNhFbq6vEcPB827Dvd+3F32Qwj97LdFHjfls/ahCjLa53FREaaipvnOzEXDqLXUztUrjqbk0dMtZ4Vp/G1mOZIWa6XlHC3FMOr4npix798Ralmu5Jm58FcNNR5SOmu7LqxbBkSDVjUQqVUcimCLpNH9pX7WYiyQP9Q9QSwcI5w3hik0DAABgBAAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAARAAAAdHJlZXMvdDAwXzAzNS5iaW5jYGBgZWCwcFzGwMjA8sTRz8GfgYmBdXvuYVvZAwwMLAwMEo4CH8CMDw5MbY275q7u2yUcbrcHpOq2mbOdwAegvpuMzg4Fp1t2XTRZtBvEv99k56BW07Dr5ry2XSBz3/+LcJAxAOr4zutsF6G1afcHIHtNbYHdm4f8Vv4lTLtBpnlNWAQ0Dci4dTvDblr02d0zgvaAFLLIaFy0e8vitds5zA+kkMVz0lq7aKCxrPPKnRw0QVoZGELAWlkYEiTsdl3jsF7Uo20FdAhrx3E5h5jqhD35d9p3MYB9sQLmnQpHkyfPrMrVRfaANTIU2LFOvGKVnhNmDXLxWu9KoNFAE5KvGjuA/bjDzNDhyir+3f/Nz0Ncdf6+HXv11J3nCp7sArlh844tkMCoT6h3uOy9bZfO5rPWIIWreXbZlYnK27zTnmEDAFBLBwjaMFQzQwEAAG4BAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABUAAAB0cmVlcy90MDBfMDM1X2F1eC5iaW49k39MU1cUxw9C+VmmKOAqYtBaf22ANUpo+370vd73nmgVdTpdDBNFA465aUyMP0hshWjUDcxU/IGmKNFsbn+AqJFwnyI6B1nmj4i6VXSTBdjIdP4hMZoqnra3nOSbl9zP9517z7nnAgAko0CapcHyjZqv72O6jQMufveQ+G3PISUK0QhU8Bsb9K2coUFbgFivmunEj1qoyVIrnhwXI0YjikFFMz9AtwzPpmt5PzTRbJeZnimrEK+mzRTikMSj4lhOgBsygFN60m6hv//3TL9QOsZWU1skjkSSjxoJkahF32Wpsn8irfp0Fs06djL35X2w2ZE4WM5QvvpjBLIsmuG+m3YkT6J/FlqE670ZjhREo1EpkXTFBwjAIdn9zkIN7fP0oa4mTr49gucQ8cwbikGDBiteKzPrsmiNOo2O8dntjWSXTUAksppD9f7Vg/kKXZ3mM3Ty2tn6dccVofJSJp+AKBGVMFzHlzJ4HpHnFz7Xk1vqaGKBm980xSPYkKQyhWOrDG33SKm/2VGS0kCDK7d+WyE4g1fFcob714F9eSCvG9ygG3LeUr/vsG3S9rN5aUjSUWnD+Zz4W6MsfObRxdJyPbKKP4OLecNBcWmRNHV3gA4Mgr4nd491X/O+XCwOFFZrXGgO5mjwolxNT13KLf4mij7unqO8tPYTA5sTA5sF+P47BWLNmiu+Kf+rn8u5d3/HkuT0VCUJkRGVFKnD+ZZA4xSluqiC61d5mnb3mjTgAzIW0YeosZHjeU4Q8EhkvfFH7tevHzi8D3tEt/+8pCLSmDccHRLOgWJaYLyy/950eu3FamdGwZBrLpICtndo34ouFbJK1KOmudw/0hGOGkYpJ9xe2YRoHMoUSdfdiVucI6cWHuCWWVv04kCicieqUp6HaD7zhmI2UaH4FWnwV3Ft0bF8uq/QWd++WXYjWsB6E+oL/QLzHZfL8hPoqYFzfGKgj+S8qhKDb/EDCL/J0Pk8KwnEFKnb+95QMae31ew9KFsvPiYZiMajMoavNxuvyObae7iZQqVXX+XbIjdU89JCRIXMGz7fBBWcO5TOP+yt3pvVdNOan0hr4IZrEaLFbO/wXBlxDqbJWwrquA07jcK6pBni85JuPhPJBFTmcJ/rca42Sr88KaGBGg/f+z+It08/5Zcg+YR5w3EZfUelLv9N/t88QVjuybaXWW5xS5EsQ70HUEsHCIywPiWCAwAAiAQAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAEQAAAHRyZWVzL3QwMF8wMzYuYmluY2BgYGVgsHCcycDIwGLnG+zgB2LkR/o5aDIwgaQO2Ap8YGBgYWCQcDTflLcr1k97zwegxO1tjnbLqybvaovO3GUA5E9SybRbxbVrN0hOb9Ziu2tXF++KfbdvF9AQlu25h+3AponJF9lBTdNw3KsfbpV3aQdIB0tvykq77J6Ju60vmu6GyUcweuzi2mK5G2SC56S1dtFAh7HOK3eCOSwEaBRQikHD2m7y3OVWDEErrSFaPRyFO15ts+cV2c0A5q9whNpZ4Zh+9rzVjjBWkA9YVq+ysvtWs8rqSpuMNcjP4idSgEaDFW5xBBtt16tg/18icFfnmRk2IH+dWb3b7vLC7j0skw6CjAa6IQJmtIfjpz/nbc7/Ngcr9HuxxW5VQPruC75q1gBQSwcIlfz3riUBAABhAQAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAAVAAAAdHJlZXMvdDAwXzAzNl9hdXguYmluTZJpTFNZFMcPLiCItlihIi4Qwrh8sCIWsb196319KCqgKCqouMQ1cdQPflBnAkqIKyoRosGoGePCkhlN3HufwYhRXKJxDYoGwWrVECdxZGZwPW1viSf55yX393/3f889FwAgGgXyOB3y1+gFBxMYefDaeef8e/GVZ58WhqgHyv8N9/scNh0aZPpyQxwzZbWxu+ePip+LqoWeiHqhenJBwWgdWqupe4GFeSpL2O3vu8UR3uuuCER9UBF8T4AWBTpG6XHew6zmwwBm2r1erJfiBRMSM8oEoWpUACR5kS2WfUp6bGxpNU0sr5onZiCZyL2BOnKAQmKKnjsng6U1x7B/Z5mFj84opwORk2cHqxD3q6R5u5YbCfYlbE1h2jjL7+UOO5IBXMG6oAJMo1NvTWH/1Kxm/pXshx/HEvy6fuoZGvpQgCWqQmOMa7PNbFEWEToc9c5IRFGoyO5+DypQ/E5N72y7NEwcadxfOtc1YeNzYkEyEGXpzi0N9Pv4t3ASGbHMeB2f5o8EASVyb6CKPXg+ppR9sBvbtXZWkNzkND53pUr+kfLsYOWjL0f+M6zLE53kY6HVdNQEPuOIwNzsOvy9yt3yQiCG7a3nzjG7Vp78hvbm8+8d6vdkhQbhyTrJOZxRn5pHbj0Ip7Vei9aXv6e+oX6lrxRO/aL9n7iYrJszmj2qvSLHVQONRRSHig0dROrE+ytS/ivNJcXHZ7g6U07LMY1fRbwEULk32O8ZCq37aXRlxYU95ousI2WnuvnmChV/Bo1nB3I3PXRD4mK3yTqe1CVtJe1PTFre8BLFimgQyhrar6XJDVBLF7aWkKX1x42iL1HavbAtCi6Czr2BYlY33KjS0obMJNtOXiXtTaVi895NSiaiSfxuAvfyZb4bpGxaRaPZkw17yR9Hn1Gv75zSD1F/VL/Q+RoLMaK/Wjwe2Ik9J4yzn5rpymOT5XhEg1Hxodz9ft9Y+chfPVjdd0EYtK+Z+g6NlCYjyuLeYPlw3G2Kvn3M5bLOtcb6MlUSbLHyFCRTeXbw/d2ToSGTrjbLglGYSfJ9TNqxrUZJQDIEldC9X5Hsf3/WbyXC1S6v69dn6VJdrUOahiSbe4M1RgVpKF1VYTboy7vkqWe6bEstV3KQ5KJ+AFBLBwgIl1pxVQMAAGAEAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABEAAAB0cmVlcy90MDBfMDM3LmJpbmNgZGCRk/R32MTAxMCq6rnJ1o+BgYGVgUHCUcaAgYGFgeGDw1nXwF0fGEFsDYfrxxN3Vewr2MXAyMB6armug8AHsKIIxy0JUda7mhaDFLJ+1TJw8H/hsGvr3QdWYGMvBtlpQox1cITq0HBcuN5pV0PTlN0fmBhYSi662hnXmVj9ex1hzQCWrwAqBNoZvN7O4eKq5F1zmtl2ARWyli5vtTv5e9eeSxMO7gIazeI5aa1dNMRoD0dNkEhoaKudAEjpqix2u3uqUtY/JGytQEbFHI1y6Nz5YdeLF0a7ITpAdjCBLGuwC18432rC1hjrD2CJKY4xd/X26O/fZwX0J8uZ6RUOIKNZI7ZvsgO5inXr9WSH+xOX7mEUnQx2/tLS+3ZB/iyW/N3nQK5iLXy4BayQ5XpMvYPj7OxdCpuOWIPcFKu/y24CC7dN8NQ0GwBQSwcIxg3rb0sBAAB6AQAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAAVAAAAdHJlZXMvdDAwXzAzN19hdXguYmluVZMPTJRlHMd/nHHHBcjhwYF4V6crICcN3II77n3v/fe872uEoIT80TlNXJi564gZkTKJM5FsCyYmNVOWo1wLREYi3nt4uFhlRtBGa8wcV5lzy/kvjP65ftw9x+q3ffduz+e73/d5fs/zAgAsRsHyOhUa8tRRmPR3/JPIjBfPEUdWjhyDSIea/+rnff1WGSpq1fxBH3Ml87b/2/o2Pvfd38kiRA+hFlE/wGcitFtkjui12UuHmLKZJGfTgVbegCQOZYBovSMCnBO6v9JpN48ka94cV+6tKXCySExUkeIFgFzhF2uiFt9g0QZsHof9zAGHGwlHe8aEfT+K0Jwk23+eZMYqDzIF9g1cf341n4xkCSp5oZ+GuV2Cd28cu6OmWPv8Rat74uDjHI9EoF6ai/0S5JoVd/wdb77FBOvbuSVPJuEigPSfM0N7kwxNler64eOFJzfrtMMZGWLeyF1iRPQwyhjdHz9NwGuSH1zP0gZPL2dM62zcKqNFNCNKQZkXci8RnKTUtume337SGUjVfe2cmA25cRFk6qUlQ7NPCr4fcu07bGA3tsSIb1hO8AoClWaHc0vKVJjpIXvj/vR/d6ZX68u8S9aG3uZTEVlQqdFu180qHGtULhYt1loeO+X/vlVPCq72kTWInqbeSNlFmOkm2vkXRgyzdZrplfe4ly9c5IqQPEPfQPiO9yVhrkEpSilk3Po8/1PKFbJ/aA+Jpe8pNjq/Vz+WYetvyqDvvLPJV814G/Wk73YXiUeUgIqPnmOiSgZ+jgz85GJK0o5prapHanEckdIQpaPSFq5tGwHeLlecDjL5W351rcgYdh1K90jFiNZSb6S+wZH2SKNnG7XsndbAEP+SNLVql1iCpJRmh3OZegX271YKfF3M2Qkdsz3USuaOGqSliDJQS6Pttq9UoL9D7m1TmdfuGNmt2YKUkr6FrEO0nnrDFSwn4NihDHROB/7yeJjqugfCp9eGxDJEz9LZhOfSqcer/FA8MfWc//lgF9ucvYeM3v+BS4TIf5sY3R90irArVrl5byAgr1zt1wulwtSXDWQZEitq2cJ5u/F5V4mV90tG+OmCwN+1Y9ya8VyhHMkG6g2X97IM3X+QzJqewhuW17XVF0qJefhRqQJRJc2O5CaI8/8I+eQUc3zbDfby0Sxu8olazobkEZTtf7lewSiYtY+u7mav3QJu/IMQW4WkmnojdQ59XwiDY71suc3klptzCmt2buY2ItmE+hdQSwcIt5oFaKEDAACwBAAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAARAAAAdHJlZXMvdDAwXzAzOC5iaW5jYGRgkZP0d9jEwMTAquq5ydaPgYGBlYFBwlHGgIGBhYHhg0N2hM2uD4wgtobDbWPvXTmrI3YBVQP5S2wFgBKsHLd0HKaqqloLt2y2Ain8GujhkM/10krqg5A12NiLQXaaEGMdHAU+gI3VcFxtrr9r2YrW3R+ARpVcdLVLK1SyOm3lbM0Alq9wBBnNErzezqHjmc8uHoVPO4EKWUuXt9oxea7Y02W6DuwGz0lr7aIhRns4aoJEQkNb7cBaY45GOezvTrZSvehuDeO/WXZj1wUWxd0ghatXLbIDOYYVZNmkOQesvmfbWkEc1+LI9WuutfY+KSsGoMYz0yscQEazRmzfBDaadev1ZAdP5ql7tsS3gJ2/tPS+nbrGO4u+xztBrmItfLgF4obrMfUOq7hDdu1k22gNcn6s/i67XOtf1ult/jYAUEsHCFsAuHdCAQAAegEAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAFQAAAHRyZWVzL3QwMF8wMzhfYXV4LmJpblWTfUxTVxjG34q061octQKtwIQFgmRbBBInbU97v85tO/BjK4wPmYnZZLiptWoiEGSQzdo5zeYiiGFkFhN0Wxaj2bLV3Isw0cVsszCyD5yJAf/YB2MhIxrUZR9v29Nme5Mn94/fk/c55z3vBQBYhoLCPR5oLfd4V6qKtfcfx+Gye3R69glZg2gJKvbVxnzn82Soa/EUm3aR+49NKWs/eIO/GFykaYiWotKYH+CKCMeyZcO5P5TOcAepHTLadlhDvA7JQygdJOuECBARgv7flHltmhqZ7F9zfD/YCJJMpkTxAkCZMAl/K0U7dGok31+ZfeFQpROJi/XUxG1TFEZLqZD3MnnwUi/Zd30Df+14F2dCtBxlSvULi8BH6QN/lFiatxJbeQ0XabLwXKwF8ybKSgEOicEz75CCjz4jIVdXzAJ4GBD/c2c41ilDZ70ndOMt+5vvzyoHjljFwgsLVI/oYZQ+db4fKQQy5ZP5Oar/oIn0/bKCS5vNEs2IVqDMqdwvMXeJ1Jt+U5lYXjL8oua6bfzujEtCQpmXlQzdr0ujGV85XtXfIZtf04jB7FO8jMDNsuO5G30emB6ig7oZRagZUL8pXqBNhUE+C1E2KivZ7WezBwba3VmZoOpq+5SpkJauu3WOehB5mTdRBSJMh6nU5Ls0d7lRNe3v5/aNXOaeRlLFdiD+xl2PYK7OfaKthLT7Vilnb9+kpe910HS2T+nJ+bV9KMPWO+7ArbM245hEvt2upUX9J6kBkRFlSN5jokEG/h4ds5aS+o6j6rTLLzkqe6UcRBZUTup5S2QYpfTxp75zDOlHyEA5L80fXCdWI1rPvIkax3EOSQdONan6CvNwhN8tLazZKW6IjYxlx3PLfsVxfky1VRWk8i+Dc9y+hxpXd0lWRCtjW5Js593mBovf/elYgNz9Ys5xu7qONpz+XtyE6BnmjRe/m0L379LRNtkZ2fW5Y+btbdL5tRPCs4h8bDbxufRoMfeM6OOrlcX2w85aSwfNvPoDlwGJ/zYjeT7oEWFnultZNji8vrFA4VdvFAJXWmkukjxUbuq+YVzdBjGX2i8NthYP/9lylfNGy4QaJLXMG6/A1zKE71PLjR773ue3qxUjm6j54irpOUR1LDuRa8TfgBelaB9ZNEw6975bzM3VN3P5SB5F5f8vNyBUhZaqLd4tzp/mgYuennHWI2lg3kRF0HdNKGoecMInGteR7iftL7yyhWtEshn1L1BLBwg5CwevnAMAALAEAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABEAAAB0cmVlcy90MDBfMDM5LmJpbmNgYGBlYLBwXMbAyMBi5xvs4Adi5Ef6OWiCGGc47B0EPjAysJZ59difZei2erlaZdcHJgbW7bm3ba8bsu8p2uyxywDIn6SSaee0dM1ukJzerMV283K9d+msW7CLgYmBZXvuYTtNIINVTL7ITuADAwMLA4OG44JMUauDGzeBdLD0pqy0E2jK2f3ORHX3Aai8AEgiLe2ZnaSX1a54ztM7nzcJ74YYt9cuGuS4/u0FDmBzczTC7UDKWat4P9m2zt1g5eeUZgWxp8Vx+XJBqwbuB2CXwBSy7H1mYfdXstLKLWw3SCEwCCocD7kI2ISn/7ACGV0yOQZsNEs1p6A9OAAyNhk7zH3itvtCbuYuIJ/F56evw7U3m6yVNf7sZoCaAFLIcjgoxcHA29n6SL2TDYi//UC5w32W5l3lbLY2AFBLBwg7wa1yOwEAAG4BAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABUAAAB0cmVlcy90MDBfMDM5X2F1eC5iaW5Nk3tMFFcUxo9SYAEBFVwoSDBpFLqCz6TtMnd2Zu68FlkeapUY39Empf+Itf1LSDdKpT7S1PiKWoSSprUltqahSntnAVvUtQRokwZtpAnxuTakiUAMPrr2zM5d45d8ucn9ndzv3HNnAADS0aAsM6G23vQcuMvW+r4Vrn7dLx1556g+DdF0tL0m2XVli03oVbTDdSPs+ochK3vvCelQoNqXgOgVdAI3rPeYMHpa8w8MM29NjfX9RJP0++XfxGRELnQyPxOaU01oi+oPvxtgxY1RtuibKd+eoRQpE9FMtL06mqdAY6o57VIpuT08wFp33STlDQ98byHx8lpHsgJyVK+Mng1Vjz5hnWk9vuNXw2IZEoFnO9pAAY5phwdrQ6tyl1mT3q6l6/68L7yBZDa3oy4VoEpLKo+yC3/5LXtnU8OzMoKr+NKdodelAWxXq94etyZ2P2GBysdih7BWSEGUik6J3xc+pxD8R/3o1zoWvpUaWv9cFlt61pAsJNnorBe5TdS+S0rfz8LSTZtDgR3FdiT40BKvjSnIsD+LrvgjK+TZM2h99bhZiE3BflKe7eTWYl2N0uT6m32xrcu6ea3OHhvMQb/JV0cS1vUqrSMRdrG/kdk7T7fsK8FmQOXfgv128K5kgqUaOfuSyYGMUVa/oEo/CD9qifw7SYzP5UyaCcXVRuLWYeF2ZDUpaqjQO/4rpmmIZqDT4v3l7jbg/Elj/MxiAkWVwtGJn+j2L3XdjSgH7Y63t2RIh2CWcb9vA9n5IJPc6b4k93Wcozh80HltTGX78bwE/bNZF4QlyYesoFvS6waHqIHI5Nmx3Mh83Jqvww+vk39vdJPW5o9l7y03zUX0qt1W/LyAy4DRMc13Pp9cX/geSWTPpQ8iLtmPqJzXOlqgQluePr6mUzwunybmxkH5mjCprEBSwWcTm4vfY0Bbv+b5pMD6ZZtMus1W7e68UtX+FzPA+Sdj/ZUUYX+m2jOzxCp8lC9q1imNnsikeYjy0XnxWNnUoCvPuNwyZbXfmWXl9L1P/flHtACiSl7raBE+Y1iZcXaz6D7ZEkoPAr1H1slVSKp5diy3N0MDuUlrX+4VI6VD7NNwknqufg6di6gAPffFeWN43hX6rGCSdBZOiIUbR+jT9h6lBslKXhvTliA+0ZSSc+U1K9s/Jpbq6bTiXlhahWg1+n9QSwcInO+hsngDAACIBAAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAARAAAAdHJlZXMvdDAwXzA0MC5iaW5jYGRgkZP0d9jMwMTAquq5ydafgYGBlYFBwlH2AFAq21nfQeADAwMLA8MHh/BuqV2/Cqx2/WkV3gVUDhRbYivwgZGBleOWjkO6P4+1utgEKyCf5Wugh4ON8AGrWZe/WTGANVc4ajIAJQrVnGDGeTiKnRHYJbJ69a4PQKMS3ovY832N2hn2RtQG5JKwui47AaAE68M3WXavilj3xjJk7/kAdlmL49HbQrt7zb12gtzgOWmtXTTEyR5AO4AioaGtdiBXscQcjXL4kG5hxWljYA3ji1js2xV3h2U3xPkdYDtYGB7U2L2QybSqMl+8+wPUuZPDjK1ncbHsBLm6w7zSAWQ0a8T2TVCj3xQ6XDzcsPvtvqVQV0U4Xp1atMt45QzLA0ATN3ntghg9kWurXfOhg1Zr/9+yztwcYAMAUEsHCDzT3Jo5AQAAbwEAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAFQAAAHRyZWVzL3QwMF8wNDBfYXV4LmJpbk2Tf0yUdRzHP0l3BxwXO0Q5Oa68qZFNNIvR4X3vnuee5/M8FwKhYngrZ6Q2aBFgK8hoghPFP9r8EVygc53WYZgrqBR2z3FBiLK0UMlNhxH2R2WbrA0yNiz63N1ztz7be88fr/c+n+fz4wsA8AgJrLvcUL/WPa07rnj91+0ndLNoGFwlPURoASn81YZ93VkSlFW44Ruenbzbo5z9rYWfqfwbEwg9TEpQ/QAXBDi8WHrq4wuK3VvEpo6/lO+eOMDriCSSdGpOgKMCwIirZ2xEebeiT5mfumjr2v2rLZWInZQKsagiX7krZ/Wgkm+4q1h+6cu752y3OYg41ZyRfPxNhIGVmAaMTdysYx1vFfPefY2ckVAayRjP5xOA/wH5HV+wbnMu83aWcsUJJp4Lp1C90ViCAAcEvamW8XiMtTgbOQgE17iICP/rGazb3eDrxNn0LiX7xfeDHYP3cf8rJ/kkQsmkpNj/fbDGDbb18p3bI0rhjT8C2hs7MXFjMy4klE5aGCu73+qGyXLJPP+1cqutLLj5u3Hx9Uv3RJEQqt5ItBbIAMuFJ24lKlUViuP2qX041XuKlwjJau3onFGAJh8OP7CF5uqeDspfJfPpmm+5RUQWkxbF+11KrWUJn4x2htZNpoUOfT/Obe91ON1EnlO9kWhKQWjKxfNHe4M1ww8C/9YecXx4/zRXQGi9egPhHUNjKvWhk88sS2Kv+X4P5PWN4+5XG1Cj3pMmNr93zkhQPiMXFJ3r/cdiZddKtDixtx31hFJI+lgfVz0S8LOYrehZtf7tYP6T1eLWtW1iBiETKSO+3mwJBhD3/PmRfa7nM6ZZzouD9c8KhYSKVG80RmmcfnFo1hY0+RL7/8qtEX/KqRKKiTyv1o7UzRuQ4dOr0o+PT9ubKzuYxdsgOqZ34RJCmeEriaXbqcjAZ6LxSyPzaIr6dzzmEUsPa4QSQhtUbyS6j0gwOYe2VZMMDf5Ai+5lfC+1TdhIaJM6m8hczmppjceE1vIMZUVSteP6ow24BUs5A0TfrSG+31YBmjXyJv+hfu3QncAbnmJX3Vg9molkkczxfmsj72h4Zml/1+qS0LXMbJd8WsOXEtmseqO2Qgk2+CX/iYzg3jGnfagmJO45aMIXCJWptaN1Kylfu8tsMjqstQuc2y7ncJnnRpmFCCNZ4nVTyNfnWvHMm+zKzwcdn88v45KbctZtIeIh/QdQSwcI5DezLosDAACIBAAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAARAAAAdHJlZXMvdDAwXzA0MS5iaW5jYGRgMZaJddjPwMTAOknF2C6agYGBlYHBwlETyGBhYJBwFPgAlPKclGJrPoV316nejztBfFXPQ7bx88T2OLzOs4IobAErZPm6TNxu5aVuqyz1D5YfwEYtcUw8o2tzKInFGqKwAmZ0BFAH0PqDbOEOq5b92ylru3MXiC9yMsBhYczxHWyBvNYgV/260mgn8AGsY44j61u2vY8Ox1tD+FccH4R07fpYt3wPAyMDq6JtrIMzUAeLklKRnewBIGPmTFM7sPONlc/bnl0Ra3U2NMtK6NEaK5CkIOM9iOQs88l28058teZOS7YpOK+7+wDY7D9AZwINbT4U6wBWlZaWZqfp5bDnoJ7lbojH5jge87tj+T1gutXKSsW9AFBLBwiaWz1vGQEAAEoBAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABUAAAB0cmVlcy90MDBfMDQxX2F1eC5iaW5Nk2lIFGEYx1/zXlNzbW03O8wuC1G71G3fcWbenUM71SVXMEry6rJUTExJFiPLsOxDeHStFYaR6Qoq2IxLRaFFhUUftKIiCjs+VNiJXc+s49IDf4aX33/+z/u87wxCCAWD0OXzIqpzCmnLl0m5m8Lwh9tl/KlykfMANAWkPH0V3+54wfb0qNiYMmaqMNRLOVwtKc8r4T0BeYE8VaGIJg5tny9kHboqpb0JwYOaQvrGzxqiZPipWUomQic5eJM0zm2WfmW8kvcU3TPmn9lOK3uaNrk3V90i6Pphjv/pkOw/GqR3GVZjUayPMRGIUfVOFMMi1MZ+4+V+P4sOB3in03JhFF4NxKT2dvVlIgXoTeqbAvHsNBNVU1pDZn+LTAoBpAWFTMYdGebRJytvGYjBF/QNptAyPRtUmk8wIEr1TpQD+qaS/fQIVVLZio/flbA02oOTgND/nY3t70ER2bL42uBcaYe9Uy7UFfGJ3cHEH5gG5D+5P5Inoi8aYVNlu9T1zBc7Y2fyX89e4UIBTQeFTrZdlSWioQh+aZRdyqsrkJft+s6F9o6ZGUCs6nXV0EUexeXyj1bsv5bc6sAW0cINdHhyBJBZ7T1xH36wtPCO5GPOcC5B/kIvZrPLq1kdkDCQzj3vW3i1hRXa2px7ngRQB+7/ZjxvHkmCy0S86nVVajos41j9+2i5Y0ua84FQxlp1HjQcPhLVb8tb8V2P5FBZnzBmWkPd5r3wSZxCWu2rOYX5qB7Fi2w9sL8TZr02Fo+OD1IFj6voi1aGBACaCgpwz7EefHPMY8XBuHFmJva5tC+hKLuKngEkHjTDPccZmOMPsdVqcMs+LUYR2THi1uz4ZCApauZEXjXkvWTTK15Ta80j8uXuJaTuSitjAJIAMrjznkOezpxztpkamBuU1PviIdO+N4isAbJWncX1f2zpE5RvdclpX6wdvuPkjhq5eG8DE6hcKSjQ3bfTjC70Ch8WhfV/btHicetOxqskkQsHMgsU7u7rRZDtnLl786f+4opR+eP4AiaiM5Nep5yE6nWV3kNA0bsF3FVrWrmQwtsqDVzzvO9kA6CNoH9QSwcIxW+VMycDAAAQBAAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAARAAAAdHJlZXMvdDAwXzA0Mi5iaW5jYGBgZWCwcFzGwMjAYucb7OAHYnzZ5eAgY8DIwOrd2Ws/J3qy1Qcg+2jAVvtrm4V3L4n7spOBiYF1e66zncAHsH4NR/ani6yU7q3fDVTIctnJz6GgVXrXLtPwXUCFLNtzD9tpgnSIyReBdbCAdISJ/bU8oNu8+wNQRW/KSrtda513XzX5sesAVF4AJJGW9swubjXTroyGyJ0nom5AJf84RoPMPep3Dmgu0GWfGa0dQMpZjY2D7a4IRlupLTuzC2JPhaP1pEQrE675liAdXTKC9lAnezhWp3nsFClZtwvkZNZnvg6qygus2RIe757HKbwXAFBLBwiHw11C8gAAABcBAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABUAAAB0cmVlcy90MDBfMDQyX2F1eC5iaW5Nkm9IE3EYx5+pm9o0/1xmkpDDQlLnn2VOd7ebt7vblb4ww1TKwsCierXANxnREvuHYQuVZoUJYi8qS0SyupssUSoY7UUWGRToC6mZYeUfVIye226jBz784Pf58nueu98PACAeAcYgQK1dmPz+WJymHaTz5rBlXdfJq1BFIPKqkXOmfAE8DLfrTL/ol25LGpfTciU1mY5EFYVEKnloJgSAr/z51y5xwPlN/PJnmU7sS7dEo4pB5DVYGQzYCaHVUEJN+l1i5Wc/5VybpXPQbFYIVhkDjYTg7X0uZYku0flWb54u99F6NHnKmapALo6F3im+bcnk1uX6xOu1E7SWOE0loElEEsLnXWMAlq37eyqoRx+OuJ2/VOa6wQ46H02Bkg1UwzAP0MV5T46JXZc00sqP36ahjnmyEJXhv28GTwwH0Mi2jI9Lxe+fiJepAXO5ftUUi2oTEhue754VHH62dCFavPVwRhrNWaHOuvVUEppkJCk8X6tV/uYlfQ9ZsJrp7m7fQcFEU8EeNEVKNlAOkQWQrLu7FyW17q6UNfXRJG/vRYqV3sG+tZg7wMwNukR3yVWp7pi5dPpOfD6BJhchwn0tmPMwxTV9IoMzhnaNSIlyt4G7K7cL8nnGsRZS4x0Z1ak6eU9hWpkaVTaiDv2XiUoBtkTYZowesm8xQoq/YOfrpaOcVr4pRBuar6GQh6ec8OzBkqie/UTW/L3PDjXV8ymotiIp4Wdg56DXz+2ci6EGfRclw7lDzLvMbrZUfppKNlC5GzYw3LCdWI+jXnltpDq7iofKIpZERSm9A30XNvB+BbbaR0htVVpzxnA1d5xIsKai2oakhs5LtPBwqoff7lh7mZZ0WDKqX7AH2QXWjIpWssHKw//3hvmZs88cld7ubq4A68h8XZlFHh35B1BLBwjrYnHqqwIAAHADAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABEAAAB0cmVlcy90MDBfMDQzLmJpbmNgZGAxlol12M/AxMA6ScXYLpqBgYGVgcHCURPIYGFgkHAU+ACU8pyUYuvz9PnOh8cP7vwA1HMxwN3h44p9ux+oJ1lDFLZAFOZXXbbdNqvG6uPVp5YfwEYtcXzxWtqmJfCVFURhBczoCKAOoFEH2cIdVN0u7nw6c/0uEF/kZIDDPt87O2aqfbcCuerXlUY7gQ9gHXMcw4Q/75ma5m4N4V9xPN2Tu+v2+cl7GBgZWBVtYx2cgTpYlJSK7GQPABlne4TtwK46q3/WdtZ7Ayvj79ZW4nYTrECSgoz3IJKzzCfb7Ui6ZZ3n4m3zbIvw7gNgs/8AnQk0tPlQrANYVVpamt3bv1p7/kyT2Q3x2BzHmnMLLbfktFjtms+0FwBQSwcI6QZB3hsBAABKAQAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAAVAAAAdHJlZXMvdDAwXzA0M19hdXguYmluTZN7SBRRFMaP+chSMx+rbSaKUSFaSGnuOjPOzN15lGZYUgmW2EMwrEWEtoKyTUnthWYPK8TKkDIpi9LS2d1EA6P6w4TeWlppT4heiNLrzDq7dOBj4P6++c65c+8AAASioOmcDIccUnJ/uFL3GOjjey2iECwLHogmodTnZNW3ZbFkfXFA7tncTVnHi5TZXytJTFyx6InIC+WpCaJPClAwW4rfc1iprf9IbQzLZ80D5UTN8NWy1EyAYwK+SdbHWRSp/K7taeUVY8TO9aw603TXbM66Q6CzQsj8Uq08NxYrRwt3GGNXpRsWI0nWvBN1kQfg+AVZZvvn7ABm25sl7K+kMdqAxKj1dvblYiTsTdI6X1Pta+YxNwvLSWGPf2oQomBUkCvuap0IvRfEa4ORdFtjFZV+4BQ3vHYnSUFEaV7NiH0zydBIF/OtuIauuqfQyrtWmkbC/PdtrH/LZLDmiJKBUfrOnLbtm1QkHrH7kCnIpqKmuOYj+TL8mCqNLK9WGvM+UPNjZ4r9R5qFEEShqBBX26QcGXqjxSf3S5Vca45tdN2ocKn1uykVEat5ndV7XoSETeKJq/s7onecpkfYLIG57ClwiHit98R5+JoAssS8YyUO7/pIm9kczc+t2MvrkIShdO79vicAZ/mwz7WOFG6MTnz7m/PqqkzFRTBpXmdlrhQBEvi/20Ntfd0GR2eQhdffGE/FQwdRu1veqq8zRgBLu9TzZiFD9gxRDa0y8c5LEVTmo3lUL1hbMb7aNFoWSGfWXGe8bpewGzpY4ofIH+Xn3scy9EWZdrUMU3UZifQzXWDyeF4JG44kERXu3kcdjvyLWOMGKPj5kXKt4uUAWcucyCvFvEG+bOg+E9VwyxZZFksONjdyevUIUHp33kvM05mu765k9uv+MG2vHnL5RdPIEiRLtb04/4/cdkm9p+bhEapJPu8o3mYUkrz1XACiRagAd98WEzS0Scw3sLMPxqgVfgXchUKDEIFkFirC3deLgLXeVGB/ZFds3bbVW+dwVZ+y2TQk6ZrXWTM8JIjfIs0iadRgxRz6q0UvTI4aJcsQZaD+AVBLBwjnUTgmIgMAABAEAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABEAAAB0cmVlcy90MDBfMDQ0LmJpbmNgZGAxlol12M/AxMA6ScXYLpqBgYGVgcHCUZMBKNVr5Owg8AEotT3X2jZbjtNSzePkzg+MDKxigZ4Oh+0Y99hn77AC6mBhYGhxBClk+bpM3K5ql7/VeY0plh/ARi1x9AvhsXn16BJUYQXQaDAjAqgDaMdBtnCHHRF7dlZzzdsF4oucDHBwcju2oz//nhXIVb+uNNoJfADrWOLofP76nsPqG60h/C2O8WzWu/YlHt59AGi1pxCHvdkBsMQfsB2sIMvArqqoSLDjZxezqiljtYa4aoqj4qUru4MEU6wa5V/vWXjgow0AUEsHCLfPuiLmAAAACwEAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAFQAAAHRyZWVzL3QwMF8wNDRfYXV4LmJpbmNgYGDgB2KGlQvdGXr2uc1dw7H72Ivn1vLhZa4CN91cGIFSTEAMotlB6nLM3Bpud7kL3V9vnf8wYrfL4Q6nDyxFrsxAKRYgZoZiBoUZLgwZym5bN9btNtC4bK1qmWjveLTNCWQGB9QsRrC6qS4MDAcc1xrF7b594OUeh01f7GqVjtnxAqX4gBhEQ8AFJwaFDhfWtNVW+rOqd7PqzLazrjSw0wXK6EHVQoCBIwNDgGNJ38K9/G1pNgGWK+w2uT621gfJQO0G2+ug5MbAMMUpUPiM9e7ZYraHUtqcYuZ/tQWFhQAsTECg44Yrw4dw154rjDZMxpbWFxIkHD8VpzkZAqWMoGohYAPIXqfEzPW2l84220w4tdtm9/OtNsZAGROksGn43+zO0BDtau2jtbtAs3uP2p9812N3/zlyAuW4gJgT5j6nVHeGL1xuMx807tblumTdrCHlurZntYsgUEoIiAVh1ppGuzNcUHB9mpe9W6rXdc+P2O8uq7Z+djYFSplB1UKCb7Erg0GK67Xr5bt2snbbPLMPdrFdy+xiDpSygNoNtpeBw5mBIdhVWT51H+tt3j19D6Ucb3E2OgoDZUSAWBju33dOwMBx7HrYtm9LYazt+p2MjrmvpthaAmWsoGrB4IGPKwPDEadvx1/u1rMq2XvSUsSRJeCygzVQygaatkBhw1CxDxgfCo67OJ9Yp0pMt3vJ7+ZiwyniwAqU0gZiVli6SgCpc3BUOPHCeuPnSftqTVxdTFklHbiBUjpAzA3zR8JvVwaBerenP71s9hdNtp7UKuNyOVXJWRQoJQbEojD3fehwZXiQ4nq5Y7e19JVlNk8/3Xac3SXqYguUsoOqBYMDGS4MLQVuocytey938dlcVJ/neP0up7M9KCkBMQBQSwcIJun1RZ4CAABIAwAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAARAAAAdHJlZXMvdDAwXzA0NS5iaW5jYGRgMZaJddjPwMTAOknF2C6agYGBlYHBwlGTASjVa+TsIPABKLU919o27MI3i1D1rTs/MDKwigV6OmgvebFb/tdSK6AOFgaGFkewwvyqy7YvJ/pZnWjYZvkBbNQcx7oZ4jadv39DFVYAjQYzIoA6gHYcZAt34GteuXOjTd8uoAksa/+w2PMmvrW8FPPIGuSq+sUddgIfwDqmOK6ZcXbP2YRVuyH8K47qmoa7FHLX7DkA1OgpxGFvdgAs8QdsByvIMpCrWHR1T9rNW1xuJanZbA1x1RTH1537d7908rWKnnN5z+HJN20AUEsHCOi+CIPoAAAACwEAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAFQAAAHRyZWVzL3QwMF8wNDVfYXV4LmJpbk2SbUgUURSGj62Sq5TflVaw5Q8ht/ze1Jkd5+POrIWYphBp2hoZGxkqUriGuqXYZhYE9mlaEqEZRpFhNe5gEQZGsCtBUSwJ0k8RU0zMsjPrrPTCy/3xvNxzz7kHACAMDY96LdChSPd1C6/hpZt6kH5WNDZLJADROrR6rldzVSbJ8a3dMpDbQxWnCLK928nP/KgVdYgC0TrNYLhFwBYvXcqqlM+EKNTV72U555618eodwdpdAb7cdQIwytmWLPI768TIvbp5psTwhtmAaCNaPVfl5sHgJCb+Tvau2mNyoLGLoe3JzG4ke7TsqpI5gAKu68Q1V1/9Abowq58ZEqeoJJVotX112Z0SQCc/OTBMJXWsN0+Xt/FjLV/M6izC/TNR9fSuCO4+MXVrAL1kOE7tb7/NJh+28ymIUrXsqqxYt4bvaXKZMxq76TRjBT3j+UOnIUn/bzaOlRYLOErFhyRWHm9sGFleqBaf//3J6ZGFoPX+9/GVFpgPkRzvT8pb9C5qKSFOtDsfkwhEkegIf9mMUgu4DeLEVJHs/ZAyslj2iwy8mBMyEJm0rE+5wdhvotB/pJPSNVwxl53uI96bwO9FlKnV9tWFzQKEHxTzJKLEFczKvUeN3GDkKS4KSTQ6aq3fTzx2xlc1O5SVxWJX0Y0nbGn8BTYLSbaW9ammUMRP5mrrvLLNeUi5/LaCy8s3MhQiWtstdTZQr0hqLoz+SJUsX2S2j4qE1kezQYgS0UH+vbKqOZbTnfdQr7hWJX+WEFNQLBuKyIgO9fdh/S1CeLM0PGiiM4daqXLHNmJq2iHEINqEjln7tml836QgjMXR1rl4sydSR772jvNmRIyW9WnURqC1RqqsqnZN7APak9DDffbqhRx1ldD/AFBLBwjLqNWnlwIAAEgDAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABEAAAB0cmVlcy90MDBfMDQ2LmJpbmNgZGCRk/R32M/AxMDKwBBkF83AAGJYOGoCGSwMDBqOAh+AUmlp12xfLNe0ErKauvMDIwMrj5Gdw3Tt97v2PVi+G6iVZdZMVzuQQpazVyTs5prrWMXor7EAKZSYYeaQ81HLJted25oBaNmJ+d4OmiAGv42Hg8AHsB0ejisO9Oy8KFe8C6Tjww8PB2dnJhuJ4xmWIKMD49jtQQqBrgpwLLpw2ervLu3dIKs+lvLaT90+2+a8+T4rkEJVz/t2ZgfAJv4BOx/sD7DzI0842ZkpxO0+cLZ/F8TOCsdSLzerbhk9y4+VR/aAtCewcdhDPX0EqAvoxH61TIft1xfu4v2lvgfkMjmNBAfliG6rFfJNNqDwmmjMaQ9WuMQ9zOGtbKTNxPsPbUAKT8b5O/iu897DsMzACgBQSwcIJd0TDzMBAABiAQAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAAVAAAAdHJlZXMvdDAwXzA0Nl9hdXguYmluTZN7SFR5FMdPuT6aHjqOjo4ZvvrDpSXbHpRz79z53d/v/rxlpanZBEE7tCxEJBm1vYOpDKQyo4do2EtnijKjIszt3mnb2N5bQ61ZQcW0kVFuUgaZFNUZ54504MuF+/nec87vy+8CAMSjIGu5Cqt/VhtMkzQ3XyEsPNmnwJ1xfAiioajQMzbky7zNYaNLndrGhP4jv2hjSC49tahXiUL0AyrKEHheKkD28K8f92qep5eF68JSp9qfQ0M94oxeoZ4ADxT8kt3cHa+VuRL87v65kqstyRnaKSGy20D1UgheU/4zdwh11XYt5+9Ciawuy7cjEQxvuDwUoJo61+/T/39Y4r/aVSf9lOuRRCQOY/bA3LjtHDxbGFcOCLf8AXHi8Xh6d+whYkaUiDJH2lUSDqRFqeIPhMmCy15qChBvcbcsIXIa3nDNkQHWsWut9x3TbafEsiZm7/61kRAk8nfZwKpiFSqBX3jj0Gyd1Xqy75aSfnU/G4bIhBoW2S+hQAW3lfvy3VrVlGixq6RdiZmZxiyIklCWyNjuPBVyz/B7b/M0+j5F//w8T7l3higYAjDDG65pDIImbulocizbYBZ+646lLfU9FMMHbswemJv5GV+lUsuog/q8BX2OtCV17NW+ryQZkRWVPBizF9v/q6iLqkT9eKeeDm56snwlK0CkGt5wtePxK+V1PipdvlIhzv+jgTwO5JPpSGYYdyuUDZz4UYXD/crBpBqh3WvVGzqzeNGYDBaNKAYVHcnvAPow6xtra4WK+t8vBpqz+LZaGxmOKB81PHIO930FerPVDDfTZ83zCSOaS6UP9Vk8BVEqKmVwv50UPP8o2R0m/4S/JumXnr0RUwoTpEIkMw3vQD29UAAx2wsSn/QJrc2P7F7FylNfT2azEM02dgzf+1eY3xB2yEv16873YuK7EexKW608EtEo1MjIfpe60Hdaztlcrq/c1urIKIpjPedriA1RGso2uN8L9Lll3+xCfdfHu/536XHMaW5yFCEpNrzhmiCHlDd+vLj7WLZ0NDHotLbkkDlISozZ4f8tE6/GWbpiwVTpk8vmj6qwyBcbe8hoJOmo0YP9HsqhnM+djZW0cTWSOfgnWbOMklIkZYY3XG/Rt5QGG774NwUeC1t3xBCy+DCZi6Qc9Q1QSwcILhdVVV8DAABgBAAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAARAAAAdHJlZXMvdDAwXzA0Ny5iaW5jYGRgMZaJddjPwMTAknd7u100AwMDCwNDhaMmkMHKwGDhKPABqMbwfbBD/fVVO+/0vt4F5LO6huo5MNz7t+u9EqsVUCvr9twOO4EPYB0tjlJTL+x5YBa/+wPYqC2OBenBO3PTzfcwAA3SfBvuoAlizLcPcRCAqPBwfDhvzk5N9ZJdH4CumPGC3b70S6hVflW/DUghy4ZImMICR+WZ7bslxFJAClkLbffZ9c9YZr171ecdQIWsiraxDs4gfygpFdnJHgAyzvYIA10FVHpW/6xtmtdxy7Mqty07DDysQJKCjPcgkrPMJ9sd9dlhzf9Oz2bl6Um7D4Dt+uMIciZr86FYB7Cqe3fn2s2v2rrbz1hnF8SjcxzfbWC1XDTdziro7Ko9AFBLBwg9GAGBIgEAAEoBAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABUAAAB0cmVlcy90MDBfMDQ3X2F1eC5iaW5NkntIU2EYxl81L3Nq2rImZl7SaLJKktza2dnOzvftLG8V1IICWzciMkKChG42RoRUWjArFTMWNm+ZhWTq2VSMiqA7lOUfaUFIEEWWVlLUe+Zx9MLDgfN7eJ73fOcDAJiLglaPDc72C5Evn/XlaG8xy0LLrWGLBBqCKBQlPSMlnzvbBgNqm2dJrEGV5xLtW5dadfwVGoZoDipMFnRk2WCwgRpfNxnyx4Z8K4cyrRlT9yxSRpScJWXCdKUA24eElB97Rc/mWqas84zZey3TKu0UP7ubNPpTAjhvEkeVXWzTu32JUG7WsbtYPaI1sndmRgj87BcGC6742ku9zIujhL/kTrcakDByd6AXdhJwOmlq86jfrm0S3y3faGk5p7YkIJmHSgjm1fMAiSSnxNVf5FL6//YUcNM/v3JGJKzsnZkjFGDM4k2bI+ZbPviztGMcvIrhTEjM/50NFKlssP0G3VPiEEfuXvZ1Hj9Nex9nEQWiaJRidj91nA2cXvqpwyVy1YXGxYqDdHeZkqgQzUepZmuNXwR41mWtu0/Ew7VqXwRzneSOJlMOkUX2Boa7ivtF8Q97wo3KLbkm069QMrDpK4cfB0TuDvQO5qNPRSfT4vypB/4YJiYmefdxDZ+IaAEqcTbPmYa+LLL/hMb/tCrOlzT8jZ+v2GfGl2CVvTMTwwMXTbtMG9iugto+TWSjOXdVJi8gscl3KzzQm0GhvFfQFsezHsdFxhgh8FUX1lCJRcie0EDvbVz3PBn/eIcprK9hb3ZUmCuyzbxSakIpg/+3CH2p5JD+JNNqnGZCHo3nCTsqzAuR5KEWBvdrwCP4zUPKYQZ+VDLgLNNCvGfFWiT5cuZMnotI/7f62A3WXaHzNxZr+BrGwyUh0aGSgnlvA/dlyrGHdbeOsN2jzzlHaRxfgKRQ/pbAPdjWi0fAWdrH6xiv097f9EZPV4cncbGIVqNig72dBK52Cw82v/DZn7QwX0p2c8VjOpqMZBEqOdirwP3sRHiz05/ODYv+NoZb8H7UVISkWPYGRh0igHa/oElpNpxhPzNl39W05vcUvw7RetQ/UEsHCPgBYAEfAwAAEAQAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAEQAAAHRyZWVzL3QwMF8wNDguYmluY2BkYNlmk+qwn4GJgVXVM8wumoGBgZWBwcJRE8hgYWDQcBT4AJRKS7tmG8zjbnXXyHfnB0YG1jMudg6Fvy/t8n/ctBuisAeoEMyocNzq8cBy0qnfez6AjVrimNezwfrhwRArBqg81OgIoA6g9ce0wx3OXS3Z+acmbBfI6L+zAxziRGt3OnSvswK5yvFYox3U6CWOr7sP7nnlP88a5KZukQl2B3ee3v37zN2dQIUst7fNAjofyGjQm2anCWJwmlqAtQJdscKxIsfEqvxssyXIjjb9dAdFljbrmCseVhAP74E5f4qjPn/3npJH93eDFD5+UeDA8POfdSG/J9gxnhvn2MkeALrawLvcAeR8VgP7HIcbydNs/udusi6T3mYDMa4CHGwsG4Uv2rm8nWk9qXWCDSw0Dii77ObXF7MGAFBLBwifjoiRPAEAAHsBAABQSwMEFAAICAgAPE1yVQAAAAAAAAAAAAAAABUAAAB0cmVlcy90MDBfMDQ4X2F1eC5iaW5Nkn9MlHUcx79wx9lhcsChSAYhmJcNlJytyff5+X2e507lMBGKE03oB8mWbmputAg9xsHlw7VuK0yzjEgJ0zxcS9s9d5fVmo6cOOiITZwUzNaWP2rLE0TrczzfY322975/vN57fz6f7z4IIWQBuT845UCDql0uPRw8s/oHnHdMVdK+90tJwJJB8XcOCL3SaEcn3nVUW534Ppeq3dobIGUTXsUAyAgyUKH8uzKqc9nXGfxa9/r9uL7iDf6880sSz3iIZsUzkXBNRsghoYne4OMrjeGXnC9yhmkrH58pnc6m1xRBXQNyw8Bd3M8jbXRwI2dVt2EOCE+9erkJpEu2q62hgo8Kwz9eP8BNb/dwAhCR9p7p66+0I/Sh9OqRFry4ZwezZ/ILElb9fAagTFBGIs4V99WJu4p9+PDWjyNZY0eJ+a0RHpogiXr1KiLI7ZHUwBa2eNLIjNe38D7RxsJySPnf36BouwPVvaMMM1rQOuAMbT3bpvxcohIzoFSQOTHf2XoHuviYPfPNFdoCNYS9o/nKgfSobAWUBbIm2oouyKtWPk3J0XLTTKGatTF5w0iWDEMjB/XOVO8hBd0+pmwpztPSl9cw/3or5MhOl7wG0FraO0nfA9Z6Wyk0lUa8akQrOLFD7Ngnk/lAFoDmz+47F3xGcv3mrsjEuMLeij0jWp44xK8DUka9et0kaI1HWdm7N5zbpWotqUlicqCAOIGU09uauau+Zjvq+lY+Engfx+acZPLv/0FeWFIkpQAygVIS/1fUBKstli63f4bl7qXhv367QmIPhoW5gB6OT5XYo67Qjg4GlNKoiE1hC/N70CtM2oZINqCFoOzEeOc8MrqQae/0/oqj55bg1toyYfyXNn49oGepVy9GQt8cV5a12djXzffwVw0e0fT5abIBSAXtrf9fO5xGiDS/lhxpHD3JVO5uFfKi1/gcII+AcmbzHgXfmDg1WBzZf6Mj3PtnO/v0343CRiCV1KuXH872IOna/AlbXnkPRztW8Jb+Zr4KyHP0b5JnfAsJGgvKhn4LJz35HiOILUKGzybNA5IGmjc73wjklYid5Apb1f0yd+dqk9DQ53tqERAWtGi2bwn43OKlacztM9eyjqkzvHF7jvA8kGqaSfMkNOaRt2XXslXLyjHa9B05le8juUDyQLmJOPdPcC8XxM4GgY31rOJ69nxNjh89LbgAbaJevc5LSFgq9xX9ExoKagwJDQnDSU2kBshm0H9QSwcIoKuFBJ8DAACwBAAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAARAAAAdHJlZXMvdDAwXzA0OS5iaW5jYGBgZWCwcFzGwMjAYucb7OAHYnzZ5eAgY8DIwOrd2WtvaTnJ6gOQfTRgqz0P07tdB2oKdzIwMbBuz3W2E/gA1q/hKLLthJVcc+XuD0CJiisT7Wwf9O58++gCSCHL9tzDdpogHWLyRWAdLCAdBW9CrYS/7dwF1MHSm7LS7lChwO6i3KO7DkDlBUASaWnP7H62TN9pZhC/XYDr/C6QcZNUztlFA13J2jNF1wFsrrFxsB1Y+cxIZbuUnKNWX9SzdwGdzMLkoOWwNGj+rlRvtj0gf7WzFDgIgCRm/slzCJw+1XKpgxfIySzGxsV2AoUHLOd0sFsfAPJt1BXtNUF2mCyUdAAbLbL7gZ1t3OLdjvU6e0D8rr8C9nGucru07MStMyMabABQSwcIqS/rpyMBAABJAQAAUEsDBBQACAgIADxNclUAAAAAAAAAAAAAAAAVAAAAdHJlZXMvdDAwXzA0OV9hdXguYmluTZN5SBRRHMffqluepK66mllbYgfl0WZtOrOzO9dOmqZloqX+lZpJ1EYlFlLWGkV2EIlYCUnSYUQK3r2ZsKyU0lKIDv/oQKmUSqzULDt+szst/eDLg/f58n7Hew8hhHxAiNYLKMMqfDAYcMTgTEI9cco09/RZXgXIBSSvM2RffLSAOmju4fWluODbRvFG6i5Tea9odAXkBnJV/Gi/RkDoFd8yQ4utN0/ggOox6vLwEDUTkDtIXh2ho5FVIxztWkWWM1r8XjNOJua8pVYC8VXkCDONcjWCcKdC/P4pCNva5hlHBx5RBiCrlTNVdp83i2pe8mW5KonJ34vr/1yj3LoiST8g/iA/53nHaIQmmHOD+8kvY6GSZ9cs427iEBUnt6h4HWlrOdTXwCdlLsdPTx7G+vlF8TW/VSQBiPyvZ9ThziGUy4YXl4suFzbjnit7jFlDQYQHIE+Qh7O+agaVjrDvpPOEPqROtP1IIVVbbYQGSABI46yvjJF7ftCoJqt2F4ju3VOEmS6MMgKhFK89SjGLkMjoTzWJj7uLxGXtrXFtlTUxJrl0Jbcjbwb4Uumx+CU4Mf+QqP+8JO74eGVUIJBVoEBnXhP4OmhDvhEvOODVXrVvMtL+PECMcrf2u+tPEVCwi2U0Op0IUDfiku6d/M8VOZxaeSfqf3MpnWDRULJgnXtXHG7KIzKbU5jXtu28l3xTIC9nfeGQ9zJrIBaQre4R0sT6cPPtfI7RAgkGaZ31IfB5MyVdReTUd38xT5tu8vEdkItGnOJ1BA9bajZ5kSBSr65KaYlTdH3hCZoHYlFy2/NmhwhIt8Firl1G6BY/IL7qt/FZnWlMCKDZoJB/x+UEw3s+yEb8iiee9E2LYaMFfO1IiRk20RrFa497sRb0ZoTbeNJKdBbWka79Z8wJ101MAqBEZTb2uXxUQRkx9CbvW9i2Q0d9Ls7mwo4sNst/MRY5/qRjLgEMylRZvHUV0paEBjxJlZqMUdlcKJA5oFBnvw1wRVa6d2WS5HfxuaTN2WOqu1RLrgWSpHjt8WIaRkCwLc/u42YfiVw4nsb1fHFhkgGtA/0FUEsHCNuj3f4kAwAAEAQAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAACQAAAG1vZGVsLmluaXVSTYvbMBC9z6/IvcRIstN8QA9bupSFdAsl7SUEodhje7ayZPSRkn/fsePCXnrTm3maj/fmTK71F+iV1zcMkbxbfVqVRbkrRKFg8G/v47KoBFiq0UVk+DSausfVcQn8WniqEGBs55nRXYf5GSj1A+OvwTSELq0+ex8TuW71jUuQQ0DXkHEOY2Ta8eV0Oj7r59cvL0+vUJuEXOLOiR/YBaZwF8iZGo6sq7IsP+7EVm73Su43qoKYRww3ijjlU8gITrdoUuav03IMa2tinJGckLd5cBOqGDV+MDQjAVdjjavxHb81NiI02Jpsk0491+y9nTqJYgNjIB8ebN1QTIGunDnLQlxYywbtf3KJBozJDCNHlFBqLeVa7k5if6jkYbMteK8PQh6EAIy1GXEZUt+MzfNYy5op4Aw34h/QrMWj6bys7tA9BkFX+2ZygH38efoOmk3q9Bj8G9aJBdYmBDNp7rK1sAyc0+MQOpPZBeP4GNxv3WZXLwlq2F1KdyBHSbezLOW+lEqxT9uKn1UJcF4Uv4BF16We3U/Bj3cY9c3/QRthMHxm5HNk8mLIBf4CUEsHCKXYMAusAQAArAIAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAHgAAAGV4cGVyaW1lbnRhbC9tb2RlbERldGFpbHMuanNvbu19+3PbVpbm7/tXoLi1NXItJOP9cE+6Kn604xk7ztpOeqqyWQxEQhJiEuAAoGSlK/u37/edewGCBEmbskW3tZpJW8TBfZx73ue+8I9RksyyJh09+seoHl9kszS5zKo6L4vRI9dsQUU6y0aPRs8fv3pVTrLpL+6oe9Vcz/uvRn+aoxl/JPmEbe7RutT/9+x6Q+uA/qu8/ivb1+Un52kynqZ1nZ/lWYU6w8Lm6Oc3LwF66D4USP1wrRJaS6fnJYqcn85G6iE5W0yn3ZCrdJJnRWM8Lsu6yYtz41U6vsiLDIWrrJ6XRZ0l43K6mBVtlVk6zcd5uaiJUpWlzQz1V8sU6MEcTdImTc4qgexFqb+xznZKyes+pebXiR0ldT5JUie0VymlC/coJZD64VoltNbkgDfpbD56ZAdBFAZWbMVxEJqji/QyS+bl7yBkUy0yDZj1ADen8rclTfOU1GuA1ujRr/sj/FNb/a2824D8i3E26aHdUcccTdNT6N8K6CKbglmjpxmJmjbo2MgnxllZGc1FXhtS8i9GumjK4/OsyKq0ySZGfmYUZWPU82zMYU1ORNT/a5FX6PnRWTqts83UmWRn6WLaJJfpdNEJeTpuFum0hX0LLMyL+WJtENPsUkg7rvImH6dTtCPvyeTfUKPGoGanWZWUZ0qhey8WHP/0Osk+jKeLOodeXOXNhXp/XuWT9HSaabL+aR5AYpoqzQuomLY8S7kZvNDS82JilGcQmMxoSxi0XIYU+5hwdOblSwvHV7KBK8LxLSB8l0QXiKNTmrGB8G54NRDfZZlvVYDjm8hD/BUF+AsgfPsCzAjlIPJbnJXTSd2T2g6gZfXHBUdCeZUX4qn//Zi/jXFV1vVxT4SPLKMpjUlecxAGCv71O8N5sEuc86IZyrG1LsTWmoxYd8uGvM+yeSLETHo2QyKhPmc+Ukzz6+8XGQxLRUawgliZAaNUpV2MOS3LaZYWQ+bo2HmFPwq2wiIFarmUfZhnVXP3eDQH5fIxf36cUatld3CrV7B1E1+SgbrYKgc1cIWFGnbXeUhTljDYPi+YFX+Uj8Py+2ieGM5l7XsO7sXBelxWWZIhEU/yhrkhG18ybMvrIX+koDFZVMwcWN7oylPlRLu61OKgPKqzcVlM0ur622dTU2VZAgefVZfin1e5tP5WM+mtcIaqo5iQnqGEAeJU10ZdGrO0uDZYtT4xnqo4Q2YH6qwhX61bjTXuBG+2m7uthu3JR4yYIR1mJhkhjaiJRSOv12ZtjHfg67+8bahpBPyLUc6lwat8OjVqBb8W7qtg8zStwV8UIKid20TSVOUkmynBaDtTMla4zasSr2Y7fWNWLGZDURh9//O716N1eVBJ1YpItAV3ykVb6E1aTEr2BnYtpiV+LMc/+saShR5z1+Wmg7Yyo0SA6G5xgnkxyT70pWjONOO0pkFgqV0M/CUbv9VSVX1aHryBjavzaPsp9/rM1Mf4tT4xj06usvz8oqmXANABtq8lJYPE8uwMhq0t8XV4PkS85fvwjeb9m3VFNVSJL8vRvcYOceya3zDmld4x9u2rJxvFgeh91jzGQdC7Uco8nIIdTGt9VPb3lnRzxaZ8Hbkf4tjK/fBNO1VCmjF+1G8YkajCan3jE+JJ+ECU+PW3T1OBX0fi/Fi4nKFxolLW9Nz14lS9+m1NLD+tylcTlU8wk58sKoeLqRSTgURRC2JDaVl9104DK9mQVykcoBabw03L3IXJs3VxaOm+Dtc0fy3g1iEhIEWQKtHnaWakkwmiTSitZO7l7LRdoOyp9Gl2Rp6l8/n0mskji07z4r1xtijG31zYcksqOrSQX9+eD5BsBWXwYkME2wtLDV3+xHieX1IC6nKWrRRIdRGKzR9ZVTIPokCA1AxzIV9C1Akr541xVpUzESMuAEE2/2Kcq4bTYq3ZKpvi52XWa98ZNl5l8yxtlGymjVGVV0ZzlY+zE+PH7LxfvzZSSDIzNHC6vGJ+9mPZZI+Mv/deIyg/ZhMbKAAEJ8aklBbyYlxlwF4GUud/ZO3MZW9VSykb/gODaHWmKtMrugUG2czBcaI/FFMDySamcbpo0EtxzOmCc5RVgi741Yv5vKy4RyCFImfT6YnxVE3rtKJusr1a8fECiKN+O4BZ2nB2YQZhNY3JImt1f5pW7GaKtKXTa07LHp9BO8vqxHhxZlyXC5l10Lz4zrDEyQv2ps5Xm0VVALPlhK6ihAG2dLzBQEVISMxGEwjULKsqGzegWWmcoxfIQjoeL7gbotcchpbNSjAUxOyNskXpu93zIXfUGn0LweVpOk2LcaZ2eWT9cGH4Rpujx+rF2oYHKQbntCggzpd5akAaqocLpNbVcZ3O5lOWPKJg5jPd9ERq7lyV+5ZmNQ/GMyF10hI1Uaagz7qtBZZbnkjsjSySuedapkAUS4/ywphmH/JxeV6l84t8bJQVajwQ27Myq2YaXSu6y2VAs2gQ5Dfa2CKiAYdUhFOeNhAj3ZcWjHY+vMtTjDdKProSrVTukp2zaZk2n5rAfNSg3NaSxcGkZpZ+SGQOO2lpSO/Yk5qtBbTUvEo/5LPFbOn8+9511RiouXLVDIErxuFoDB8CmZhmgMH7FIZ9Yj34DB4POeyfDGbTBbTCX4HcKfbCtJ0talmLT5G+f9jE4W1lNJN/fZrBq48Z7fxmtBwXRh/9d0Mz5IGa7W4bMqShcSazDKeMChgdcVpVJONleV7vuxbiDNjnrHPPuWvLIYUsJvW41QEG+1/UstO+RPWHOjFQiYPsZzmoTkyyOTBY1YEWtmbYSFZD3nH/EGV8UUzzWQ5h3n/rkD8g9jqt7xap8yJh3N+n9BKkCf237CqruyTPOFLpAajbT+qYdCB5Qdh3tovok3LBEQ7obltD269gK9RXoDvEgOI0X5kbbp9b0kOakd9mFYfZzSEdIVWePoT8PmBqm3MtFZlp3TDUm9HSHCE3BCfq5oHeFM9Vb7YsiWWB2G+aNyqLzGD7wdx5qdThNu39XWFX0pTzRA1qjXErbz6fhbNyyMGWa1VZksfoSvN0kukZlNNrHceLz7kqJSlokdqLv7bleEOlJGxNKQm6S6maYibCqYFqtsAecxl1nZdr7NWZ1Dbu7qOVJ8YPatZJz1oxDodySxrGmSfJB8/ypvnI0tA9i1eWpZ0E/JjPQbT+kvQKVDO5B1RbUoxpWXB+rzd3WEy6pFnPH7W7io6N+VT0coH/te3AwyKBB+M7AJCHCElDHawpp1klmTWEpAHLT4yfquySS7WGpgeF6QfntXFVLqaqJsTqvcrCEW0aVxQsytOb/+MYug/IBwSD26vBiyyb1CKON3HaJ2EcBrFru14UOK7th89cKxqI05ZSqwK2pdBdErk15vfEbvhGi96ztJpedwKx3M4EYgC784yyAQlYk6IT4y0FgQKYzyB9MBNqQQB10nOpMc2KcwTM79uJgHU5nJSZ2nyFBirOEDOufv/ouzVMZSOk7IG8zGSSoL+B/8G+xuifZC/d4QVCEX2TQHRv2qRHsQdEpjkhU7JVETnitrFHsFDnavVhsMHNRKRwmYtV4csqO6+yWkwJbU9alLMUFFIbXFngRV1O1bINnB2c0gO1yqMWIMYLdDyTmupnohdyZPqIC1AFkDsV4ydTC88fv5LST9/8Ta01UPh+um4uKNTT/CM7mg+5766lEssrYuLXq7fP8O8b9efV9/rhJf9+//MT9e9Pb1glP2skGjyHoswBmOX1Kh8Iy9IiQXSmpsySrKpKLqSs8ADPirLdjx6Jv7X9f0PPtknm+y+7HWF68nLpEimbSjuOlVnsVIB5BsJtnieqtR3sJj+1OZP9gnp7aZsr6aBsMb7YZbi2+UIkppY9sF8KuGrDFOwu2TFOzlSLgsuvCcazMpswfLU2fdNOK+hSNBKKJsp4rW2lN36G2es7mZtMNmyYaxhONazMNNwFLtUI9frqph7bbfN4EnrP62wxKY1Kdh23a+v6ID1eH0GZuHcFRuwjHp4x8pD0xwMd8aw4DOPY813PQgTo+OG6xhzbd2oOQRJCdXyhLLKkQCP99duNb1szuKBHxX/cdjHJxLv+hQlJkSHRr95LKnjB3JA7Hs6yKy4HzpEt0P0iKlzkjWynJaPrGRf99Z6R+5Ng+/EQ9KiKhLspeqxbAWqOvSRML9BmxpHs1YFloQHj8tmNjNcGNzN0MndLZ5akTdKiyNLpatq+5XV3JCidqo1F0xVunF4rl69ny/RJIR7mkiWFo+zk/MQEt+KYuTL/xg+MG6XJw6nt4cz2XXM38M8IzmCHVo/YrYHbrQ09aLdj6gslAqPzdIG4WwzYzdMBEL0okVLk+P1fC0TfpznC9Fy0qqwmeSG/ZsBmCe91PC/zupYhnaezWYq/zRVcbq7sx3yaSrSLhhEEiQxdLE5lV5UO/r8x5rcDSdLp/CLtsX/wYm1vS/teXNT/ah+WSaqJAB2h+iknSEnBAsEg80n7ZnHgYLlPQGum1L9biqkFL5kj7K56rFmHa868U2BDwMKWFrKLK7ZwxbnRUuCQK/aAK/Zd44ro+0BdVqG7dOUHlnz46rg3n3PUXODnBc/KtWxBlQm3iqmJZrhJOETZprpVr3YuoW9XrHioWPFAseK7xUK8G79vF1K7TX19YJv6Sk67fKN2XdeLWW9DFkfyJW8p+8Jbb/9J43LZyZitB+ar0DaXKq/UxsdMRYNcJVVx3xcI0vcP+e5AkN4j83JWczMbVt5rhnwPe1TLoYRqlTUr21q7mTwQQ2+JL3XULiVMY5195rIE+ftRbt7vPe0MWjlNNmvU8M3qoZe+Yt3r05chfzK+SItzpTrru08+oej6TLoq0l0Q1ONblyCL3sjNGdKIcdTGCH8VdjI++NfvEOQdiKV3TZ+EPdokbWNkr8h2DfvKrusuxG7c9Sj7b5LeClF/HWPL+zaiQ9C2ssl+ZZ0J3ELgzZBdlvhQarJY+q5Ub/wByy7S+TzbNe+xg2nPjjekTQq6zjoB3iXudXur1Pte/rT+orvKidusAKL9W+7M6i2rn+WFHLDkBTOzdKp5JOH6rq0ye01M/Vzk6Gr2/SSdU2g+a35q2FZ3cUw7jVI/n5an4hHfcPPGm/JUju/rmniEdf/WJprk9MtpnXDfMZdE5Ja8tfXHTe/XFyFPa5jVJlN77CgUaiuzWmZZHpi8kWoebJPUN+8gSeikKPM6S04hvVf5ZOUQwJbX3QFHDTKO6vx8lj4gG5/rKVhDZmZl3VLss7Ri/N8fj2xTF1Y3bGTZOstvsjFu/wXmb551vV2wSVaMy8nqCs2W1+02Nw3RF4GpXUu9bbVnWdosquyLGd5nqvDNra1u4HWR/VA2L3gJnZr/V4BnHyhoOdn5OC9UE8/yc/HsL0kQGa9Msr4tq+bxdXvhkW75pTq98q3ZYnAqP5WoVTZtrHB//Y1mPHdz/ISQqTG4SCf71zQHHxhq71lTFvnYeLOc1YSPRtHxYsrIt2t4oucHeHtbeprDV+e84u+Jfs+K3I7GoCyfZGrfdHcgnp8SmMlEAy/q2NDODrm7XxzfKgeb7jTf9K6d1pabHrotP72SH5kG3ec68682afN1yI+KF+VkC/27l21m2VMW9U4HxF/K7Iqma0X/mPkd8qEtsdZKayOWJuIL2c0Dckzt61S7GRMuf/c5tullN5lzllWyCZxWUe3FzUiwdGUhXWZAYeAeGf85TYvzRXqePXqfXfO6se9Yhj/+cweT1aVi9+sMA471NzNs4dumIju41y9+z7YvzTYYFcRbyXLlrQZ/+mvgWwu0axQrF2Ko0sbyM0PqVnV1C1Beg5m8g6esrj9+Y989l5Zcyouku9hnO6t2l+puHs4kTFy+N/BPaYDWOW9W6jhkXF1wJb1bfkX8N+ZFF+AigkPejrQo1AbkF4wk60yFilBangO7WDST8qowFdt7C7v6zgw5/aAWeZsUEvPpNzneRzUfEYptl4R/avlWUHqL8Z9yd3iHPyVkoU5lTa/VcbsdksnSWvZ2sH7zSc3BlNH67NBdYvesLBjW6XsvSc2Vs7hbXncrybNUHQWpeC1KnRVynZ2uhHSyV0udKPiftlyrV8Dhwh2nhdE/xtQVlhWvYymqbk+6NtL23PVqyY/s3PiFbPli68x3wuiLoiTtVaZJtZwRWdlJs7FEX4fVaR99f/TyHvm2mlx/lRVy778+dg1u8xysukietwteVLDlbGfl0vhlW+nyxlUh9wma1KdR2jaV/ZATwSIQ3CuXVhO5O6nc3PBpJkc019rmLAik9v5LO58uSeegdy3n79bu1hi80HLznPCHL/HCUMcjljdKsuCJYRk8qVd3TD45MZ4qUmsmwSaoEt2Faaz5MQ+/0cwPD8gc7zoPcyd0P12M1xfueqDuhFJjaFoZvW3Wxvc/P5GVvC91brSF3nxy+MfXP6rjoU/evE5e/8LjoH9/9uL5D++ePdWP7avXq69ef2szvhJHqW1YWxz19hKdr+YlCVxw0+cAWzu7rLhz/rW98PyffteWUieAykWDzve84L/9FvVrqbz5Y9XqXcsekUh1zB+FEQJV5ZziOk8uQWe5Rnx58T/RqvJznmJIdGVFFf2lAHYiDf6obrKhlO/49Vt7OzzrSEOr/+D9tu/Qtf3u+vrZtjLc6gzq9ssqZsmnlrdUWvtqzaCC+vSwXo26lmmbbqKxfVsvZjMag/14+u6qfJrP3lE8NjC097ancWrr8FvdHyW+Hle5xC54O2oZRrrvwoUuZBUZta2I9/nWj1OJqnZq/miYp6rJKkD+Rz1EbLc5+mx0lMemcra3762eQl3iNhngtryg753UPRiquV43/Cyc28XHwyCvxT3/gzl0cnrd7Im3Fl9eTImg+LHUv22UgWh7c+AeiOYFgzxWu238ejcb7oFf+uFQ+PGSijUEu30PSxRP/LMhkqh6ICTBZCRBl/uKI7n8UtU7AJtvgiH5fCAMyeh1FPfhdIsmvDsyaLk2WGaleMYc/ujXEeKCX32r/ceOXTfmQ/u/E0IdG/+4/McJTuzffvuTWMsdQ4ns0zuIl32rbzX6Qfd472fbs4P8wkKTzuZ74vWuq3fLCE4W3ZaBffB72la7j1M6VrdT2NVMCu9nEN61CylyV9KhUJ2ln4Epr3M6FKK9y6VuiO3TtoVbRrmXKd1IEH5ZfrXxEKLQTyhvIAw9bA8gDj1kbywQPYyXIrHigf0VF2z+U/4Hdz9yLMc5tu1jOzKs+JFnP/JCvPo8aHQPFWh8D72H/n8OpY3h2Tg34gVzKIQHN4qXD35kLx9Cv/cQW277YJ9YvrN8sANv+eAE9vLBtXvF3KDXgGf3H/pvfKf/0G/Nj+PlQ+D6vYeg/xCHy4fQiXoPfv9NHCwfIrf/EPZai/voxEHXmgMier2HJaJ4iPzlg21bvQfX7T34/Yew14Ad9xpw7KD34PYf+p06UQ8d1+o17TpO78Hr1XH9uPfQx9qzeq15/QY8r/+mTxAv6j34dq+Y7/aa9v3+Q6jqQDAt0zYd0zU90zcDMzQjMzZtAG3TdkzbNW3PtH3TDkw7NO3ItGPTsUwHdRzTcU3HMx3fdALTCU0nMp3YdC3TtU0XTbqm65mub7qB6YamG5lubHqW6dmm55geevRMzze9wPRC04tMLzYlObc4Is+D3AZOFMUh2gfIi6M4ch07dD3Pj0OC7ABM9mzfs23Xh1yZVKrADzwHNI1jPwJyAAVW7AWoztKOy8ZcFLO9KIxCzwuD0JGadozXkeXxIsAgCtiDazleGFmxFdlRbIWWCxhQctAzOMCjUG7ILhxIOLoMIwc1AowPoMB3oxDQMPa9GKMDyA+CMPQcL7CjIHBdac2DfgO70Assy0ILAkPJMCIOgW3FDkFuCKjlW6ETuq4V+AJzojiwOBYHXA+lOSd2gAAqoxiIJeWcwAWNXN+3fd+xBV+IcxD6IACvPYws6RWv4gjDArYWOyfMhuZFaNTFc2CHgoodoTtQJAYBAl+1By3yMPjARvdWKOO3AysittJ95Al2tu+gG7AqhrVxFFFssMCHpOMfC92rchiTZbugZxT7ruqB4wljoGJj+JYMzHZi23bAA9AlQAkFA7lBXGBmObHqAY3jHxdVQ5JHYEA/ji3Pj9BtoBC2IQ+glA8zEqJrBUPTIWTQc0ltBXIAiSIodAyJUj2ATV4c+q5lQWgVvoDAjoee7eGnQteKHMiS48FKWJpuVsAhichiIBrkok+QyrMwBF3Th5DaxB89a7pZPsgUOeBf5EaWGpXlWewmdkI70DXBOgwIAuT6akgQcg4LRaFffqhgsHxeGBNnz9FjsmyInO0EICOYoFuzIiAH8gcOxFi3ByQDoIDRBp5qzyKDQwt/0aat8AUMIujFJCRVSCk6B+q5wDaAZgqnPTcmnUIIvg1xcEgUWEXwCi25ITygEn9onmN5XgS0HRoLgrwgQFXSg4IeSjEMB6IYx+RC4ARCpxhiALX2gZETQ8tEhWMQFKOFXsPAuDIOiLDv06KgkchWY/PA0ZBjhghZWq5FKkMIQAxmWI5irR+Dt55PdYF0CgwUtyMXugzFiiIxHdAYqD8wB01scJ44o4oXgbtoAvRWMga7B6cMtQtALegTQQF4FoDQ0GOIvGis7UegIwhF/YxUtzYYQ92BslPEHWnO8yGppCh8EbCRcqAw7J8L8xODaUJSGFY39mBhQ9gFoBAKDAhQ1CEJaFWsApTCJr8gWxYlTcFcL4SRpLKDTa70i+gIvIaxQBeQVekDhiUAS2jZaIRigXlUQpAAdieGEgqMRsX1PR+yQY4KDGaT4g/Rh5UX3QOVQDaQ3YVQu6LIVKoYXIO9B0MsMXioAfsCJvqWYKqqAgeQBsOKQzgeVQ6jpXJA8cAWT5WzeGesFcMUeRgw+6CAw9RB3eB4YKttgUU01xGcTEQn5AksRBU6ILgsB5IkMEhuCNyglmwlEJgfR74Lcw7aoDNVF/2D6VAhN2QVgcFdOmADLTIMoq9gYBltpwch9oNYYOBkAD1w0S0I4yoYHRx6pczHGhcXQ41RHRYHmKtxwOjhMYRVwjAs1Z5D44ZeQF0aewUDWfHkw//ZrqXGAXEFfnB5EAXfckTz6aKh/JFPAYfHER2E6rBrmmbIn6fEHnSCI4WziWDrlezGnnhrmE1wVOkCRAcOCE8++giVWBERqpxFZyiaSl46hFo2ggdFUTRHCwepp2DJKCDdCDVALKAIyyOjDSF6dojw1yEHPAWDtsAaQYbgakRY8BSR5bDwUD9wUGAOu/WhcXDAsWIui4HG7B7NQMwFGNCbxRaDA7BBOATEPL5ABQRDihs+cIXphJWj11FVoRwMGICfH1m2qgrhAokhg35oa4ZjOAEsGawulNQXXaMeBNBH0NcFi0MxGoyDXJpkSCpoKIoPGGJneityo4UFQQyzTE0ASwMFciH/aAjSAFUXmwatimOoYICCFD6FDMImYAMjC4sYxbocowtUgsIi6og00HVpX8BfgH0NsxFfeRgzVDoQVw+Y5dNcUXMom6ogVCoO4a0ReDmxEg56DgRoAUhvuWCeogOMFJADKcVXOwoGy4pe4DYhsi1MTDFEDQYVLNMNInyKiDzFxHI1jMg4cIJQiEDRCw7OpnF3GKA6umNQGJ4qhhmN9Uhgh4EDuA8BCTRpIPYMZmHeYnpDxSdoOJwjLBsMUIsK6kFxgJnnwAXryuIJ4T3RaejpTiCXtkt1AqXtWNcGslBZeCnoVKgRZLCL8NCBKYZ90D3D+tL5wPbAcenKFqWPLooRRAuDKKB+6IqktyE+pDBiefgV5eVhiOFpXPIAPBZbjkgb3IUzQIgPF6lC/JBmEJ4UYZIyTxAiWiBwHpE7jJmK8fFIDqBa7Km4F2JpYwgoBasIAyIwC/4Ybg7CD+URHjGujhiVQt1IVoFB1kKGX9Bf6IsK+wNG5Qg44Jfg3iQUQFBti/2jL1SRsE+nh7ExYAwjHUSAiPTdtEOxCq4go7CRsEbQawxIyimDAaZzFLZ4UOhoDLlhQI4eHJFIcBQROLMVmg5LgeAMYUxtekZbGVPEbFBCSCO46mkviAZiRoQe27J1ZoHgxePgRSo1Ksw+4IoYDlAwVIxDdxQw2kKe5MYKFjFMAC0R9kQqkkRI5FO0wXsmDQKjJrMsBuXpWBsBI2wtIhWHKqkC2oCJUEyPyeRFgZjQ0QgDl1CH0UztkMnAhkH7VIwHswIZYS4HboS6V3p2VLOZ8+io3xd5jxhNhjpzQbwCzBCLAMW4zVwYO6CI8FZRmH6IbgJ+n1ZHgSDRITUDjjZ2dDGQBvECOBlDixRy9C02KwbMN1sYQDChiPqsWKcuGALqUFlskEu3h2hcxW1IrSyFsqTHNuUfUY4SYpvWh+SAGaZLUDAwBkRHlIKY3dF9wBLRljItiHVVuO+YAgsq6KwPXEcxjA9yp1McChd4AF1Bk56vYR4kM4anhs9rY3xYNcgD4hWkOcQDJtClPUHgxYhL8nuQldmZ4zPlFhsNbw758xjRQtFDQQ3+yKE9hdGQDFGUmsJg0z1isGoAdDXIZWixQxWd0bBaNOpI1Cjtor4MBWE7Ke9QeRkU40MwCeoKL6BcksOQEJoON+fZlFwlrZKVkei2zlKQjsSSNcH5gywSqsSu5F7QMFeiNMLgwjBICCxkH3GaxCXIqSDpjL9j+kOCwElgBukCW2wV+HBSw6Pld+jORB/AACQAlEKPkxtihChxqMpwC+LlKhBQoZeH5KMRCRJppkPxmNB9xT8IGcgE8jIS9VVKbdMcMh2AMEbM+wQGh8wIB3IEt6/GxRkESfoZTDlCEoR2CPFAO8a1tgqnYdEdRqGIQx1mtSpU45g4E4OMQrEV9Bc1sMS/+wo9kBdkQ/sidqKuNpMwTmbgHQxWrEJ2+gpkowzEVLQKZrlkFg0lQxBpDiiAZNRajMxTuRfyE2gRonpPYieJJC1OjSD29SnGSp4YqUvyzWw+UJEkYwvEsj7zSFfHzcQDkg1MYMh0/B8BB/oE9B21MXxIQwBpBVHgLVXdkPk8eAizANekYIii6R8gdJwPiBTMFhVBYMfJAZ07hMxe4VqhyIo/VqyqYcicbHJ0OUZtqI2xgYaqHJ0Ng2KQGSNSOCP1Dkkmn2maq3MMSGbIOMWnNHdxPaSdXpdTVsp1oC9AofQQR9fR2SzDATpAqEAocZpMP1HWOEsVaoaDbAhqLJFcBDUqrvfp3BB6c5bB0pyEAnDqB4E9FNzTuQicMO1YzOkJFXZL0O1wuCHDbqEprzWCgAHDQOaiBGbTadIVI1yIVLRP0gFB5r5QeRVi4y+Qg19nkooIhTAGujIdAH9B4RAYMgZoGRIMi/xU5RDmgHYQ4xDhjZgVCqktkTMCIF9NrjHax6Ai+jNxyQLDD+TfEH7O4oU63Pc4H8JZE/Sho30aega+5KdKA71YApaYaYaeNbDUnU4SZiFaUNENgPBQEChqKqROtxhGUCsaF5+zhZ6qjpdQarhUn35KBckhw2pfrCsjOgVjTEgNgkGxdGgZgGHImpg5Rm2SgmCU1pSxNRNEVRkGEeiST5AjmWQFDBXhyThb6qr4iDDOVjicvHOUlwcMTh6EhL+FU3B0J7CanMGAjIc66OaEGPwnuqKgtzD4QM75hgxYNM42J5cZzcbcSabx42Qkp6qgSoGiAaN12H6JB1XoR1hIxseSbEQ62UIJREkxEy6mcr4GOpKmMdKzdKYAzYVUMoECoSNVGZwIEIiGDDEtZTsAk6wIigOvpZSJQIdzdbFMSbptZRopBB6cToh0WoYinIvh3DCYoiuDF3ZAvwJd0WSFq6If8n2ZqlVb5saXyWDXnNrOzhOR5WQxzuVym+skL9T+Am5CaNRJhZ072r7I/rofecXWi2XPo/sNdu0GMfW9n5UTYrs2hUn5W8bpwin3pBJr3DZSWTptLq73RUzXumXkpmndJPojsvugt6x3+/sQE34Yai9Ra+vcMm71dZ1My3Qy2ncrVFfx1jdKz9TRMTkIMdpnD+da1VtG9Ix3HaDLvVDsKt0ycvPy93Jv5LpKty2DV+l8b+S6Sodg6ySvx/vzVWod4kDLvth1lW5b6vLJPjaPxQ9git9n13ubYqlz2/uVx/M64SHcy56Z+yRP1q95y0iW86xIziZ7EbCrc8u4VfPxDQnYr3nbEsjvBKX7EbCrc8u45XJ1s7ordR/yLevdtoqUTTrd21Usax3AGO+LXFvnllH7Pb1cNrcfd1eq3jaal7Nkmi6K8UUyb+9HqPfFd2Mbt20X6xtSt1fx1qVzfJEXWTK/uK7lauj9RXVDAwdCelryu6J70nat8u6zktyIObKd8MTC/9uPfM91bNnGzAs+5IfNCaPAiq3AD1xCuNzjnERc33Ui1+dMvhyqlGXtyA91q3LSkivqcewAGsiZTMeN7cD140AawU+XpzTdkH9G/3th4f/YhWevPkd9jHzOQ3PhUZqQvQKBJyX+DTpr2DZHEuoPlfx8imEvHshIfj3OUtM4/o/ZB+f5bwJ5mReLD4Z/4p1Yx7brHMs1i/nYOEpnk8CTWtzsZnPbg4xglNXJs7cjToDd+gzWE33135OyOMvPl4cO76ex2imjRN+OmCz4BY390uQfnNfd5Yq6+gERZn9/lMW+qt1HumviAGjTZNCt8Aq6z8Gd7Ri6nYMOoKX7zbxVn+wHclsbkE7S88+RF92KwVYOiLyAbo61VD+kYkrUzCnvvXKVFcVkE4Zq4oCYt5Nq6jKBmxlCtmHoNg5O9HFZfS7RVRMHxFzfKPZ5uC+vJTsw9nWTNot9E40+5rqBA6DcXWRUZ+NFlTf7rsoQ67YNo2vjAIin8zzJPjRZwTZvQuvvf3phPFs2sDucd3lAinHq99W4yccPX0L/r7O0Or3OCol4f373RP66J26EONlRx6JteObr2jQQNl+Ui6qWW2g935ghPub9SSwEXBKG1Mn8urmAN/p9kRaztGqQavyRnKeWd9pIvLyeC0Rt/I585D1vL1ULZNNraVWurJNf//H8cVnWjWl8P0sRFhhvXfycnpdAi8u4/HgaAIumfPXSRExcZcYvKPEurc6zRn/spoV7hwnQX/CGP0M+DVLfLzVvnFqTOxDbj7Dsg1mPtreN5Jh3+taL/WYFnrSVbhm5rJ6Pd5JuiNqztz89WTMT7vB6BpVR67tCWg717yzUoOHXdJiCxxbP8liuw41S3F9kmzx7EHATpB1FPO4W2eaxpPG/WqbBXUemwS33phFyM5LBHUh44OENqLHNnSkohr8+/vhOzD9REMWmwe04eOf67MVwY8sD0EPPLlsMPZT0uP3QNHzHD9CmD/T4FHNfmsEjD3jihjq8C7jlmzgQPyMMPHmS000G924CM25WBsqc8EC33ESDknEojfFknG/zL7eg8W9oBxbvBeUofT+UgfkyII4gtEJiHuJfDyijiMt/A56IMkLLddm5xU65ddvgwQk26isKeS5bcrhDyeBpLNLLjUMhWxTxDw9m4U8QCJA729g1KIY/MTdKGQ7wDPknJrm51xnUk5OS5AoPMBhy1k2o7rMID9PwTxgEHNixTWsKcVpegSPfian3vCRL7uV7paou77fcYGw3F6ROqC973aBb3oc+7Kj3ffve7U7nqfpqeH6W95cEeoXN0c9vXgL00H0okPrhWqU/uys9Wyvx6JhbuQI5msdzeD6kYKTUab/hiEXcPhz9nareYuR1YkdJnU+S1Ant1eF0H7XqhqN82cO1Sn9qVPvDiXyeauJ2NW7v9GQL6Kod+pSrTdsNZDL98qibaYx5oGq04TpW3u7zaMNRE3P0Rr8anD8FJcpTNKA01Vz71pGikr62deVN/wuKlcMfEQ/3hNzj5/Kkgm+q6+wwmnzC23+7+3U2Y8i7gh5tOCaH5mf1VN7Z3Ezp2nJklfvZ3T9XTPK93n1behffRO/inXoXWdz3Cx/G7e0ejx66X1LtAnu32q3tA+2p3eqBkFbpxIl8ls7x4FlMRwj/Z0XBbp0boNfp3NoW9r7O+Tx+4NK7hggVLP/PTRdHt5q35YJn/X55SbMqp9Pj5VPVrNNcwopRVkw2MAMWploU+oXje9Hy9nEujde8i5pD8Nubzv+xvBJ79FT9GnzntE1ETKMT/xGUPpWpWX77kp8XUgKOhJmfiRhnJj9HMkvfZ0beIHmenh0rkTtVXx8w2ovWf8Afo7fbVzpXd5EbUNDpRLodxhHLK+cEC/Vli/Ytamy9yHv0hG+Ol2/az2MdqTbySf1gYwMrQj5spffaBFEyY56Bipcas6MJP/lCoiKb5ce897olXKiapZPNiA0kacsQW/IYbUE01orb6N/K03ZqBuBP2I6tL01eK9lnJRu6TKuc5fl9+rISyWBvv2iw8aIHRvG1e8t1Hz18l1I/elZMZD2AVzbP8uk0V18/kHZoL+ouczLU4ybabb9mfUhEljWWZY2jLB1fGMiY5OsrAlff0yL3NTulkrBtqZajN0iwtiC+QVlH7Uc9Opj6shMVZeV70MZosLm+uzK2hWyiwe776Yd0aIfWK28cncFeUW+Py7PjOp3NpysfqxYr0VdYIQkeQXHq8kWmbgzn924M/J3JB2sMFuDHNJT4tt+N1F83AaGvLnJwQO4sVbYmnfwO70Du9MSp59Ke6J/t1260cmYn5yem8Vh/u0Np2coXBlpBUo94vf5ZgtFrDWg/FNGJXN+Ej96q76xtYf6m4xGa/L37FOtPYOnSTO42BUpFN1Tr9bfBvkqMuUmxb33+bLPh+GpzZy0V9pypakdx6/v8sql8V77HpCWmG7avb9i9/kY30SP4re9y5h6UyWfg/FYaOCDGc1quollZbP00VH9a1tw+/db7Nsrgyym/mb/yOofgJApCOwp9k1Gpf4Lo1bMCxzd9z4t4mtW3eVEIJ9sRKVsnvEeMx1Nt3m/jq0N9PPDLk+6ub0U8uSiHNnmk25Jz+h5vbFLXnLkhKyFoRgV93IunTx2PZx154jSW416tfbdOeMGW4yCv4lFP12OSOi5nc0gWTUj75RrGvH/+t/8HUEsHCEhQii/cKwAAKOEAAFBLAwQUAAgICAA8TXJVAAAAAAAAAAAAAAAAFgAAAGV4cGVyaW1lbnRhbC9SRUFETUUubWQVjTESgzAMBHtecS+gyCsyKUKRfECxZawJtjxGBPh9RCXN3q00bdY2M6kzikZeIDVpL2Si1Xc8XtMTsoIq+GjcpXA1WpCYbOvsPGL30VrnIGQXOT3l+KHwHYd3ZgSt5tYKTbDsx5IukTsKnQiZ6szYxbKbatn5j/t6vff6/TaNwx9QSwcIE4XBhoEAAACkAAAAUEsBAhQAFAAICAgAPE1yVaJZYp3RAAAACQEAABEAAAAAAAAAAAAAAAAAAAAAAHRyZWVzL3QwMF8wMDAuYmluUEsBAhQAFAAICAgAPE1yVa74UgyGAgAASAMAABUAAAAAAAAAAAAAAAAAEAEAAHRyZWVzL3QwMF8wMDBfYXV4LmJpblBLAQIUABQACAgIADxNclUBG+x01gAAAAkBAAARAAAAAAAAAAAAAAAAANkDAAB0cmVlcy90MDBfMDAxLmJpblBLAQIUABQACAgIADxNclVeglh6igIAAEgDAAAVAAAAAAAAAAAAAAAAAO4EAAB0cmVlcy90MDBfMDAxX2F1eC5iaW5QSwECFAAUAAgICAA8TXJVz0KatssAAAD8AAAAEQAAAAAAAAAAAAAAAAC7BwAAdHJlZXMvdDAwXzAwMi5iaW5QSwECFAAUAAgICAA8TXJVbyWEEHECAAAgAwAAFQAAAAAAAAAAAAAAAADFCAAAdHJlZXMvdDAwXzAwMl9hdXguYmluUEsBAhQAFAAICAgAPE1yVZ3HW5r0AAAAIgEAABEAAAAAAAAAAAAAAAAAeQsAAHRyZWVzL3QwMF8wMDMuYmluUEsBAhQAFAAICAgAPE1yVQrATw/MAgAAmAMAABUAAAAAAAAAAAAAAAAArAwAAHRyZWVzL3QwMF8wMDNfYXV4LmJpblBLAQIUABQACAgIADxNclU2web2zAAAAPwAAAARAAAAAAAAAAAAAAAAALsPAAB0cmVlcy90MDBfMDA0LmJpblBLAQIUABQACAgIADxNclWe2xbQaAIAACADAAAVAAAAAAAAAAAAAAAAAMYQAAB0cmVlcy90MDBfMDA0X2F1eC5iaW5QSwECFAAUAAgICAA8TXJVtqfv0vUAAAAvAQAAEQAAAAAAAAAAAAAAAABxEwAAdHJlZXMvdDAwXzAwNS5iaW5QSwECFAAUAAgICAA8TXJVmyXgC+8CAADAAwAAFQAAAAAAAAAAAAAAAAClFAAAdHJlZXMvdDAwXzAwNV9hdXguYmluUEsBAhQAFAAICAgAPE1yVSpWVIXaAAAACQEAABEAAAAAAAAAAAAAAAAA1xcAAHRyZWVzL3QwMF8wMDYuYmluUEsBAhQAFAAICAgAPE1yVYma49WPAgAASAMAABUAAAAAAAAAAAAAAAAA8BgAAHRyZWVzL3QwMF8wMDZfYXV4LmJpblBLAQIUABQACAgIADxNclU2N0NU3gAAAAkBAAARAAAAAAAAAAAAAAAAAMIbAAB0cmVlcy90MDBfMDA3LmJpblBLAQIUABQACAgIADxNclV/Mtz0mQIAAEgDAAAVAAAAAAAAAAAAAAAAAN8cAAB0cmVlcy90MDBfMDA3X2F1eC5iaW5QSwECFAAUAAgICAA8TXJViEyVX+8AAAAiAQAAEQAAAAAAAAAAAAAAAAC7HwAAdHJlZXMvdDAwXzAwOC5iaW5QSwECFAAUAAgICAA8TXJVuMUvts4CAACYAwAAFQAAAAAAAAAAAAAAAADpIAAAdHJlZXMvdDAwXzAwOF9hdXguYmluUEsBAhQAFAAICAgAPE1yVfDbyBcAAQAALwEAABEAAAAAAAAAAAAAAAAA+iMAAHRyZWVzL3QwMF8wMDkuYmluUEsBAhQAFAAICAgAPE1yVfywHLXlAgAAwAMAABUAAAAAAAAAAAAAAAAAOSUAAHRyZWVzL3QwMF8wMDlfYXV4LmJpblBLAQIUABQACAgIADxNclXUDRGP4QAAAAkBAAARAAAAAAAAAAAAAAAAAGEoAAB0cmVlcy90MDBfMDEwLmJpblBLAQIUABQACAgIADxNclUw3crQnAIAAEgDAAAVAAAAAAAAAAAAAAAAAIEpAAB0cmVlcy90MDBfMDEwX2F1eC5iaW5QSwECFAAUAAgICAA8TXJVN4VyI/wAAAAvAQAAEQAAAAAAAAAAAAAAAABgLAAAdHJlZXMvdDAwXzAxMS5iaW5QSwECFAAUAAgICAA8TXJVfL30SO0CAADAAwAAFQAAAAAAAAAAAAAAAACbLQAAdHJlZXMvdDAwXzAxMV9hdXguYmluUEsBAhQAFAAICAgAPE1yVVA39LnsAAAAIgEAABEAAAAAAAAAAAAAAAAAyzAAAHRyZWVzL3QwMF8wMTIuYmluUEsBAhQAFAAICAgAPE1yVf8dhevSAgAAmAMAABUAAAAAAAAAAAAAAAAA9jEAAHRyZWVzL3QwMF8wMTJfYXV4LmJpblBLAQIUABQACAgIADxNclUKct4JCAEAAC8BAAARAAAAAAAAAAAAAAAAAAs1AAB0cmVlcy90MDBfMDEzLmJpblBLAQIUABQACAgIADxNclV/7LXw9AIAAMADAAAVAAAAAAAAAAAAAAAAAFI2AAB0cmVlcy90MDBfMDEzX2F1eC5iaW5QSwECFAAUAAgICAA8TXJV3Jr6bQUBAAAvAQAAEQAAAAAAAAAAAAAAAACJOQAAdHJlZXMvdDAwXzAxNC5iaW5QSwECFAAUAAgICAA8TXJVLfuwHe8CAADAAwAAFQAAAAAAAAAAAAAAAADNOgAAdHJlZXMvdDAwXzAxNF9hdXguYmluUEsBAhQAFAAICAgAPE1yVRhmqZcGAQAALwEAABEAAAAAAAAAAAAAAAAA/z0AAHRyZWVzL3QwMF8wMTUuYmluUEsBAhQAFAAICAgAPE1yVT2tURjyAgAAwAMAABUAAAAAAAAAAAAAAAAARD8AAHRyZWVzL3QwMF8wMTVfYXV4LmJpblBLAQIUABQACAgIADxNclW1mtPc8gAAABYBAAARAAAAAAAAAAAAAAAAAHlCAAB0cmVlcy90MDBfMDE2LmJpblBLAQIUABQACAgIADxNclXoclybsQIAAHADAAAVAAAAAAAAAAAAAAAAAKpDAAB0cmVlcy90MDBfMDE2X2F1eC5iaW5QSwECFAAUAAgICAA8TXJVPi1BRBsBAAA8AQAAEQAAAAAAAAAAAAAAAACeRgAAdHJlZXMvdDAwXzAxNy5iaW5QSwECFAAUAAgICAA8TXJVvEnHDfgCAADoAwAAFQAAAAAAAAAAAAAAAAD4RwAAdHJlZXMvdDAwXzAxN19hdXguYmluUEsBAhQAFAAICAgAPE1yVfoSzvAKAQAAPAEAABEAAAAAAAAAAAAAAAAAM0sAAHRyZWVzL3QwMF8wMTguYmluUEsBAhQAFAAICAgAPE1yVTxJazUGAwAA6AMAABUAAAAAAAAAAAAAAAAAfEwAAHRyZWVzL3QwMF8wMThfYXV4LmJpblBLAQIUABQACAgIADxNclUBY/CRHAEAADwBAAARAAAAAAAAAAAAAAAAAMVPAAB0cmVlcy90MDBfMDE5LmJpblBLAQIUABQACAgIADxNclXaZ+8W/gIAAOgDAAAVAAAAAAAAAAAAAAAAACBRAAB0cmVlcy90MDBfMDE5X2F1eC5iaW5QSwECFAAUAAgICAA8TXJVAJKt4wsBAAA8AQAAEQAAAAAAAAAAAAAAAABhVAAAdHJlZXMvdDAwXzAyMC5iaW5QSwECFAAUAAgICAA8TXJV41Rk1AIDAADoAwAAFQAAAAAAAAAAAAAAAACrVQAAdHJlZXMvdDAwXzAyMF9hdXguYmluUEsBAhQAFAAICAgAPE1yVZPHbjb4AAAAFgEAABEAAAAAAAAAAAAAAAAA8FgAAHRyZWVzL3QwMF8wMjEuYmluUEsBAhQAFAAICAgAPE1yVRYpTp+wAgAAcAMAABUAAAAAAAAAAAAAAAAAJ1oAAHRyZWVzL3QwMF8wMjFfYXV4LmJpblBLAQIUABQACAgIADxNclW/v4tHGAEAADwBAAARAAAAAAAAAAAAAAAAABpdAAB0cmVlcy90MDBfMDIyLmJpblBLAQIUABQACAgIADxNclVSadTKBgMAAOgDAAAVAAAAAAAAAAAAAAAAAHFeAAB0cmVlcy90MDBfMDIyX2F1eC5iaW5QSwECFAAUAAgICAA8TXJV1buVOhcBAAA8AQAAEQAAAAAAAAAAAAAAAAC6YQAAdHJlZXMvdDAwXzAyMy5iaW5QSwECFAAUAAgICAA8TXJVLgKptAMDAADoAwAAFQAAAAAAAAAAAAAAAAAQYwAAdHJlZXMvdDAwXzAyM19hdXguYmluUEsBAhQAFAAICAgAPE1yVYtxI8MHAQAAMAEAABEAAAAAAAAAAAAAAAAAVmYAAHRyZWVzL3QwMF8wMjQuYmluUEsBAhQAFAAICAgAPE1yVeipNh70AgAAwAMAABUAAAAAAAAAAAAAAAAAnGcAAHRyZWVzL3QwMF8wMjRfYXV4LmJpblBLAQIUABQACAgIADxNclXVIDABQwEAAG4BAAARAAAAAAAAAAAAAAAAANNqAAB0cmVlcy90MDBfMDI1LmJpblBLAQIUABQACAgIADxNclUhMEkqhwMAAIgEAAAVAAAAAAAAAAAAAAAAAFVsAAB0cmVlcy90MDBfMDI1X2F1eC5iaW5QSwECFAAUAAgICAA8TXJVELF0ki8BAABVAQAAEQAAAAAAAAAAAAAAAAAfcAAAdHJlZXMvdDAwXzAyNi5iaW5QSwECFAAUAAgICAA8TXJVHvov5EMDAAA4BAAAFQAAAAAAAAAAAAAAAACNcQAAdHJlZXMvdDAwXzAyNl9hdXguYmluUEsBAhQAFAAICAgAPE1yVV+PRX4zAQAAVQEAABEAAAAAAAAAAAAAAAAAE3UAAHRyZWVzL3QwMF8wMjcuYmluUEsBAhQAFAAICAgAPE1yVbo3g8lIAwAAOAQAABUAAAAAAAAAAAAAAAAAhXYAAHRyZWVzL3QwMF8wMjdfYXV4LmJpblBLAQIUABQACAgIADxNclV57gPwMQEAAFUBAAARAAAAAAAAAAAAAAAAABB6AAB0cmVlcy90MDBfMDI4LmJpblBLAQIUABQACAgIADxNclV6ribwQgMAADgEAAAVAAAAAAAAAAAAAAAAAIB7AAB0cmVlcy90MDBfMDI4X2F1eC5iaW5QSwECFAAUAAgICAA8TXJV3zT5ry0BAABhAQAAEQAAAAAAAAAAAAAAAAAFfwAAdHJlZXMvdDAwXzAyOS5iaW5QSwECFAAUAAgICAA8TXJVUpkh1VEDAABgBAAAFQAAAAAAAAAAAAAAAABxgAAAdHJlZXMvdDAwXzAyOV9hdXguYmluUEsBAhQAFAAICAgAPE1yVcC/UykLAQAALwEAABEAAAAAAAAAAAAAAAAABYQAAHRyZWVzL3QwMF8wMzAuYmluUEsBAhQAFAAICAgAPE1yVenD2HbrAgAAwAMAABUAAAAAAAAAAAAAAAAAT4UAAHRyZWVzL3QwMF8wMzBfYXV4LmJpblBLAQIUABQACAgIADxNclVhTW9+RgEAAG4BAAARAAAAAAAAAAAAAAAAAH2IAAB0cmVlcy90MDBfMDMxLmJpblBLAQIUABQACAgIADxNclXWW8CffwMAAIgEAAAVAAAAAAAAAAAAAAAAAAKKAAB0cmVlcy90MDBfMDMxX2F1eC5iaW5QSwECFAAUAAgICAA8TXJVL5D7WEQBAAB7AQAAEQAAAAAAAAAAAAAAAADEjQAAdHJlZXMvdDAwXzAzMi5iaW5QSwECFAAUAAgICAA8TXJVoC3L65MDAACwBAAAFQAAAAAAAAAAAAAAAABHjwAAdHJlZXMvdDAwXzAzMl9hdXguYmluUEsBAhQAFAAICAgAPE1yVcT2/zo/AQAAbgEAABEAAAAAAAAAAAAAAAAAHZMAAHRyZWVzL3QwMF8wMzMuYmluUEsBAhQAFAAICAgAPE1yVQg3p9B8AwAAiAQAABUAAAAAAAAAAAAAAAAAm5QAAHRyZWVzL3QwMF8wMzNfYXV4LmJpblBLAQIUABQACAgIADxNclUIZabBNgEAAGMBAAARAAAAAAAAAAAAAAAAAFqYAAB0cmVlcy90MDBfMDM0LmJpblBLAQIUABQACAgIADxNclXnDeGKTQMAAGAEAAAVAAAAAAAAAAAAAAAAAM+ZAAB0cmVlcy90MDBfMDM0X2F1eC5iaW5QSwECFAAUAAgICAA8TXJV2jBUM0MBAABuAQAAEQAAAAAAAAAAAAAAAABfnQAAdHJlZXMvdDAwXzAzNS5iaW5QSwECFAAUAAgICAA8TXJVjLA+JYIDAACIBAAAFQAAAAAAAAAAAAAAAADhngAAdHJlZXMvdDAwXzAzNV9hdXguYmluUEsBAhQAFAAICAgAPE1yVZX8964lAQAAYQEAABEAAAAAAAAAAAAAAAAApqIAAHRyZWVzL3QwMF8wMzYuYmluUEsBAhQAFAAICAgAPE1yVQiXWnFVAwAAYAQAABUAAAAAAAAAAAAAAAAACqQAAHRyZWVzL3QwMF8wMzZfYXV4LmJpblBLAQIUABQACAgIADxNclXGDetvSwEAAHoBAAARAAAAAAAAAAAAAAAAAKKnAAB0cmVlcy90MDBfMDM3LmJpblBLAQIUABQACAgIADxNclW3mgVooQMAALAEAAAVAAAAAAAAAAAAAAAAACypAAB0cmVlcy90MDBfMDM3X2F1eC5iaW5QSwECFAAUAAgICAA8TXJVWwC4d0IBAAB6AQAAEQAAAAAAAAAAAAAAAAAQrQAAdHJlZXMvdDAwXzAzOC5iaW5QSwECFAAUAAgICAA8TXJVOQsHr5wDAACwBAAAFQAAAAAAAAAAAAAAAACRrgAAdHJlZXMvdDAwXzAzOF9hdXguYmluUEsBAhQAFAAICAgAPE1yVTvBrXI7AQAAbgEAABEAAAAAAAAAAAAAAAAAcLIAAHRyZWVzL3QwMF8wMzkuYmluUEsBAhQAFAAICAgAPE1yVZzvobJ4AwAAiAQAABUAAAAAAAAAAAAAAAAA6rMAAHRyZWVzL3QwMF8wMzlfYXV4LmJpblBLAQIUABQACAgIADxNclU809yaOQEAAG8BAAARAAAAAAAAAAAAAAAAAKW3AAB0cmVlcy90MDBfMDQwLmJpblBLAQIUABQACAgIADxNclXkN7MuiwMAAIgEAAAVAAAAAAAAAAAAAAAAAB25AAB0cmVlcy90MDBfMDQwX2F1eC5iaW5QSwECFAAUAAgICAA8TXJVmls9bxkBAABKAQAAEQAAAAAAAAAAAAAAAADrvAAAdHJlZXMvdDAwXzA0MS5iaW5QSwECFAAUAAgICAA8TXJVxW+VMycDAAAQBAAAFQAAAAAAAAAAAAAAAABDvgAAdHJlZXMvdDAwXzA0MV9hdXguYmluUEsBAhQAFAAICAgAPE1yVYfDXULyAAAAFwEAABEAAAAAAAAAAAAAAAAArcEAAHRyZWVzL3QwMF8wNDIuYmluUEsBAhQAFAAICAgAPE1yVeticeqrAgAAcAMAABUAAAAAAAAAAAAAAAAA3sIAAHRyZWVzL3QwMF8wNDJfYXV4LmJpblBLAQIUABQACAgIADxNclXpBkHeGwEAAEoBAAARAAAAAAAAAAAAAAAAAMzFAAB0cmVlcy90MDBfMDQzLmJpblBLAQIUABQACAgIADxNclXnUTgmIgMAABAEAAAVAAAAAAAAAAAAAAAAACbHAAB0cmVlcy90MDBfMDQzX2F1eC5iaW5QSwECFAAUAAgICAA8TXJVt8+6IuYAAAALAQAAEQAAAAAAAAAAAAAAAACLygAAdHJlZXMvdDAwXzA0NC5iaW5QSwECFAAUAAgICAA8TXJVJun1RZ4CAABIAwAAFQAAAAAAAAAAAAAAAACwywAAdHJlZXMvdDAwXzA0NF9hdXguYmluUEsBAhQAFAAICAgAPE1yVei+CIPoAAAACwEAABEAAAAAAAAAAAAAAAAAkc4AAHRyZWVzL3QwMF8wNDUuYmluUEsBAhQAFAAICAgAPE1yVcuo1aeXAgAASAMAABUAAAAAAAAAAAAAAAAAuM8AAHRyZWVzL3QwMF8wNDVfYXV4LmJpblBLAQIUABQACAgIADxNclUl3RMPMwEAAGIBAAARAAAAAAAAAAAAAAAAAJLSAAB0cmVlcy90MDBfMDQ2LmJpblBLAQIUABQACAgIADxNclUuF1VVXwMAAGAEAAAVAAAAAAAAAAAAAAAAAATUAAB0cmVlcy90MDBfMDQ2X2F1eC5iaW5QSwECFAAUAAgICAA8TXJVPRgBgSIBAABKAQAAEQAAAAAAAAAAAAAAAACm1wAAdHJlZXMvdDAwXzA0Ny5iaW5QSwECFAAUAAgICAA8TXJV+AFgAR8DAAAQBAAAFQAAAAAAAAAAAAAAAAAH2QAAdHJlZXMvdDAwXzA0N19hdXguYmluUEsBAhQAFAAICAgAPE1yVZ+OiJE8AQAAewEAABEAAAAAAAAAAAAAAAAAadwAAHRyZWVzL3QwMF8wNDguYmluUEsBAhQAFAAICAgAPE1yVaCrhQSfAwAAsAQAABUAAAAAAAAAAAAAAAAA5N0AAHRyZWVzL3QwMF8wNDhfYXV4LmJpblBLAQIUABQACAgIADxNclWpL+unIwEAAEkBAAARAAAAAAAAAAAAAAAAAMbhAAB0cmVlcy90MDBfMDQ5LmJpblBLAQIUABQACAgIADxNclXbo93+JAMAABAEAAAVAAAAAAAAAAAAAAAAACjjAAB0cmVlcy90MDBfMDQ5X2F1eC5iaW5QSwECFAAUAAgICAA8TXJVpdgwC6wBAACsAgAACQAAAAAAAAAAAAAAAACP5gAAbW9kZWwuaW5pUEsBAhQAFAAICAgAPE1yVUhQii/cKwAAKOEAAB4AAAAAAAAAAAAAAAAAcugAAGV4cGVyaW1lbnRhbC9tb2RlbERldGFpbHMuanNvblBLAQIUABQACAgIADxNclUThcGGgQAAAKQAAAAWAAAAAAAAAAAAAAAAAJoUAQBleHBlcmltZW50YWwvUkVBRE1FLm1kUEsFBgAAAABnAGcAKxoAAF8VAQAAAA=="
},
"category": "Regression",
"fields": [
{
"id": 0,
"name": "length",
"description": "",
"type": "float8"
},
{
"id": 1,
"name": "entropy",
"description": "",
"type": "float8"
},
{
"id": 2,
"name": "p_vowels",
"description": "",
"type": "float8"
}
],
"clusters": [],
"parentId": null,
"hidden": false,
"runtimeSize": 78608,
"fileSize": 77728
} |
| 404 | Returns a message when the model name is not found in the server. | 500 | Returned when an error occurred internally in the server. |
|
PUT /models/{name}
Replace the data of an existing model.
Note |
---|
In order to work with Model Management you need to activate Machine Learning permissions in your role. Go to Administration → Roles → Permissions → Machine Learning and active the view and manage permissions in Models. Learn more about roles and permissions in Role permissions. |
Expand |
---|
|
Path parametersAdd the following path parameters as part of the endpoint: Parameter | Type | Description |
---|
name required
| string
| Enter the name of the model you want to replace the data of. |
Request bodyThe request JSON body must include an object with the following key-value pairs: Parameter | Type | Description |
---|
engine
| string
| The engine used to train and execute the model. | fileName
| string
| | description
| string
| The description of the model. |
ExampleFind below a request example in cURL language: Code Block |
---|
curl -X 'PUT' \
'https://api.stage.devo.com/mlmodelmanager/v3/models/fresh%20model' \
-H 'accept: application/json' \
-H 'standAloneToken: YOUR-TOKEN' \
-H 'Content-Type: multipart/form-data' \
-F 'engine=H2O' \
-F 'fileName=@Example_test (1).zip;type=application/zip' \
-F 'description=fresh' |
|
Expand |
---|
|
Code | Description |
---|
200 | Returns a replaced model. Code Block |
---|
{
"id": 24,
"name": "fresh model",
"engine": "H2O",
"location": "domains/self/123456",
"description": "fresh",
"updateDate": 1683723908575,
"creationDate": null,
"domainName": null,
"outputType": "float8",
"image": null,
"category": "Regression",
"fields": [
{
"id": 0,
"name": "length",
"description": "",
"type": "float8"
},
{
"id": 1,
"name": "entropy",
"description": "",
"type": "float8"
},
{
"id": 2,
"name": "p_vowels",
"description": "",
"type": "float8"
}
],
"clusters": [],
"parentId": null,
"hidden": false,
"runtimeSize": 78608,
"fileSize": 77728
} |
| 500 | Returned when an error occurred internally in the server. |
|
POST /models/{name}
Create a model.
Note |
---|
In order to work with Model Management you need to activate Machine Learning permissions in your role. Go to Administration → Roles → Permissions → Machine Learning and activate the view and manage permissions in Models. Learn more about roles and permissions in Role permissions. |
Expand |
---|
|
Path parametersAdd the following path parameters as part of the endpoint: Parameter | Type | Description |
---|
name required
| string
| Enter the name of the model you want to create. |
Request bodyThe request JSON body must include an object with the following key-value pairs: Parameter | Type | Description |
---|
engine
| string
| The engine used to train and execute the model. | fileName
| string
| | description
| string
| The description of the model. |
ExampleFind below a request example in cURL language: Code Block |
---|
curl -X 'POST' \
'https://api.stage.devo.com/mlmodelmanager/v3/models/fresh%20model' \
-H 'accept: application/json' \
-H 'standAloneToken: YOUR-TOKEN' \
-H 'Content-Type: multipart/form-data' \
-F 'engine=H2O' \
-F 'fileName=@Example_test (1).zip;type=application/zip' \
-F 'description=fresh' |
|
Expand |
---|
|
Code | Description |
---|
200 | Model has been successfully saved to the server. Code Block |
---|
{
"id": 24,
"name": "fresh model",
"engine": "H2O",
"location": "domains/self/123456",
"description": "fresh",
"updateDate": 1683723624663,
"creationDate": 1683723624663,
"domainName": null,
"outputType": "float8",
"image": null,
"category": "Regression",
"fields": [
{
"id": 0,
"name": "length",
"description": "",
"type": "float8"
},
{
"id": 1,
"name": "entropy",
"description": "",
"type": "float8"
},
{
"id": 2,
"name": "p_vowels",
"description": "",
"type": "float8"
}
],
"clusters": [],
"parentId": null,
"hidden": false,
"runtimeSize": 78608,
"fileSize": 77728
} |
| 409 | The model already exists. | 500 | Returned when an error occurred internally in the server. |
|
DELETE/models/{name}
Delete a model.
Note |
---|
In order to work with Model Management you need to activate Machine Learning permissions in your role. Go to Administration → Roles → Permissions → Machine Learning and activate the view and manage permissions in Models. Learn more about roles and permissions in Role permissions. |
Expand |
---|
|
Path parametersAdd the following path parameters as part of the endpoint: Parameter | Type | Description |
---|
name required
| string
| Enter the name of the model you want to delete. |
ExampleFind below a request example in cURL language. Code Block |
---|
curl -X 'DELETE' \
'https://api.stage.devo.com/mlmodelmanager/v3/models/a%20new%20model' \
-H 'accept: */*' \
-H 'standAloneToken: YOUR-TOKEN' |
|
Expand |
---|
|
Code | Description |
---|
200 | Model successfully deleted. | 404 | Model not found. | 500 | Returned when an error occurred internally in the server. |
|
PATCH/models/{name}
Update an existing model.
Note |
---|
In order to work with Model Management you need to activate Machine Learning permissions in your role. Go to Administration → Roles → Permissions → Machine Learning and activate the view and manage permissions in Models. Learn more about roles and permissions in Role permissions. |
Expand |
---|
|
Path parametersAdd the following path parameters as part of the endpoint: Parameter | Type | Description |
---|
name required
| string
| Enter the name of the model you want to update. |
Request bodyThe request JSON body must include an object with the following key-value pairs: Parameter | Type | Description |
---|
name
| string
| The name of the model. | engine
| string
| The engine used to train and execute the model. | location
| string
| The storage location of the model. | description
| string
| The description of the model. | updateDate
| integer
| The last time the model was modified. | creationDate
| integer
| The time when the model was created. | domainName
| string
| The name of the domain where this model belongs. | outputType
| string
| The type of the output value generated by this model as a prediction. | image
| string($byte)
| The binary image or file with an actual trained model. | category
| string
| The type of model. | runtimeSize
| integer
| The size of the model while running in bytes. | fileSize
| integer
| The size of the model file in bytes. |
ExampleFind below a request example in cURL language. Code Block |
---|
curl -X 'PATCH' \
'https://api.stage.devo.com/mlmodelmanager/v3/models/fresh%20model' \
-H 'accept: application/json' \
-H 'standAloneToken: YOUR-TOKEN' \
-H 'Content-Type: application/json' \
-d '{
"name": "fresh model",
"engine": "H2O",
"location": "string",
"description": "fresh",
"updateDate": 0,
"creationDate": 0,
"domainName": "self",
"outputType": "float8",
"image": {
"image": "float8"
},
"category": "Regression",
"fields": [
{
"id": 0,
"name": "fresh model",
"description": "fresh",
"type": "float8"
}
],
"clusters": [
{
"id": 0,
"name": "string",
"description": "string",
"centroid": [
0
]
}
],
"runtimeSize": 78.6,
"fileSize": 0
}' |
|
Expand |
---|
|
Code | Description |
---|
200 | Returns the patched model. Code Block |
---|
{
"id": 24,
"name": "fresh model",
"engine": "H2O",
"location": "domains/self/123456",
"description": "fresh",
"updateDate": 1683725008565,
"creationDate": 1683723625000,
"domainName": null,
"outputType": "float8",
"image": null,
"category": "Regression",
"fields": [
{
"id": 0,
"name": "fresh model",
"description": "fresh",
"type": "float8"
},
{
"id": 1,
"name": "entropy",
"description": "",
"type": "float8"
},
{
"id": 2,
"name": "p_vowels",
"description": "",
"type": "float8"
}
],
"clusters": [],
"parentId": null,
"hidden": false,
"runtimeSize": 78,
"fileSize": 77728
} |
| 400 | Returns a message when the model name is not found in the server or the received patch JSON is incorrect. | 500 | Returned when an error occurred internally in the server. |
|
GET/models/{name}
List the available models in the current domain.
Note |
---|
In order to work with Model Management you need to activate Machine Learning permissions in your role. Go to Administration → Roles → Permissions → Machine Learning and activate the view and manage permissions in Models. Learn more about roles and permissions in Role permissions. |
Expand |
---|
|
Path parametersThere are no path parameters for this request. ExampleFind below a request example in cURL language. Code Block |
---|
curl -X 'GET' \
'https://api.stage.devo.com/mlmodelmanager/v3/models' \
-H 'accept: application/json' \
-H 'standAloneToken: YOUR-TOKEN' |
|
Expand |
---|
|
Code | Description |
---|
200 | Successful response. Code Block |
---|
[
{
"id": 24,
"name": "fresh model",
"engine": "H2O",
"location": "domains/self/123456",
"description": "fresh",
"updateDate": 1683723909000,
"creationDate": 1683723625000,
"domainName": "self",
"outputType": "float8",
"image": null,
"category": "Regression",
"fields": [
{
"id": 0,
"name": "length",
"description": "",
"type": "float8"
},
{
"id": 1,
"name": "entropy",
"description": "",
"type": "float8"
},
{
"id": 2,
"name": "p_vowels",
"description": "",
"type": "float8"
}
],
"clusters": [],
"parentId": null,
"hidden": false,
"runtimeSize": 78608,
"fileSize": 77728
},
{
"id": 21,
"name": "TEST1",
"engine": "ONNX",
"location": "domains/self/123456",
"description": null,
"updateDate": 1681900499000,
"creationDate": 1681900499000,
"domainName": "self",
"outputType": "array(float4)",
"image": null,
"category": "ONNX",
"fields": [
{
"id": 0,
"name": "field_0",
"description": "",
"type": "array(float4)"
}
],
"clusters": [],
"parentId": null,
"hidden": false,
"runtimeSize": 880,
"fileSize": 3881
},
{
"id": 20,
"name": "Test2",
"engine": "ONNX",
"location": "domains/self/123456",
"description": null,
"updateDate": 1681804104000,
"creationDate": 1681804104000,
"domainName": "self",
"outputType": "array(float4)",
"image": null,
"category": "ONNX",
"fields": [
{
"id": 0,
"name": "field_0",
"description": "",
"type": "array(float4)"
}
],
"clusters": [],
"parentId": null,
"hidden": false,
"runtimeSize": 876,
"fileSize": 229468
},
{
"id": 19,
"name": "TEST3",
"engine": "ONNX",
"location": "domains/self/123456",
"description": null,
"updateDate": 1681738747000,
"creationDate": 1681738724000,
"domainName": "self",
"outputType": "array(float4)",
"image": null,
"category": "ONNX",
"fields": [
{
"id": 0,
"name": "field_0",
"description": "",
"type": "array(float4)"
}
],
"clusters": [],
"parentId": null,
"hidden": false,
"runtimeSize": 876,
"fileSize": 229468
},
{
"id": 17,
"name": "TEST4",
"engine": "ONNX",
"location": "domains/self/123456",
"description": "DGA",
"updateDate": 1678361980000,
"creationDate": 1678361980000,
"domainName": "self",
"outputType": "array(float4)",
"image": null,
"category": "ONNX",
"fields": [
{
"id": 0,
"name": "field_0",
"description": "",
"type": "array(float4)"
}
],
"clusters": [],
"parentId": null,
"hidden": false,
"runtimeSize": 892,
"fileSize": null
},
{
"id": 16,
"name": "TEST7",
"engine": "ONNX",
"location": "domains/self/123456",
"description": "this is the description",
"updateDate": 1678201475000,
"creationDate": 1678201449000,
"domainName": "self",
"outputType": "array(float4)",
"image": null,
"category": "ONNX",
"fields": [
{
"id": 0,
"name": "field_0",
"description": "",
"type": "array(float4)"
}
],
"clusters": [],
"parentId": null,
"hidden": false,
"runtimeSize": 876,
"fileSize": 229468
},
{
"id": 4,
"name": "TEST8",
"engine": "ONNX",
"location": "domains/self/123456",
"description": "",
"updateDate": 1676390228000,
"creationDate": 1676390228000,
"domainName": "self",
"outputType": "array(float4)",
"image": null,
"category": "ONNX",
"fields": [
{
"id": 0,
"name": "field_0",
"description": "",
"type": "array(float4)"
}
],
"clusters": [],
"parentId": null,
"hidden": false,
"runtimeSize": 876,
"fileSize": 229468
},
{
"id": 2,
"name": "TEST9",
"engine": "IDA",
"location": "domains/self/123456",
"description": "TEST",
"updateDate": 1676291578000,
"creationDate": 1676291578000,
"domainName": "self",
"outputType": "float8",
"image": null,
"category": "Rrcf",
"fields": [
{
"id": 0,
"name": "dimension_0",
"description": "",
"type": "float8"
}
],
"clusters": [],
"parentId": null,
"hidden": false,
"runtimeSize": 23764,
"fileSize": 227
}
] |
| 500 | Returned when an error occurred internally in the server. |
|
GET/images/{name}
Start a new task and add aggregated data from a specific dateGet the binary image of a model.
Note |
---|
In order to work with Model Management you need to activate Machine Learning permissions in your role. Go to Administration → Roles → Permissions → Machine Learning and activate the view and manage permissions in Models. Learn more about roles and permissions in Role permissions. |
Expand |
---|
|
Path parametersAdd the following path parameters as part of the endpoint: Code | Description |
---|
200 | Aggregation task started. | 400 | Error in request | 401 | Unauthorized error. | 403 | Forbidden request. | 404 | Not found. | 405 | Method not allowed. | 500 | Server error and Java exception.Parameter | Type | Description |
---|
domain required
| string
| Enter the domain where you want the aggregation task to be. | aggrId required
| string
| Enter the ID of the aggregation task that you want to start. Note |
---|
How can I get the ID of an aggregation task? To get the ID of an aggregation task, log in to the Devo platform and go to Administration → Data management, locate your aggregation task in the table, click the ellipsis button in its row and select View details. You can copy the internal ID in the details shown in the window that appears. Learn more about this in Aggregation tasks. |
|
Query string parametersQuery string parameters are optionally added after the path parameters, preceded by a question mark (? ) and separated by an ampersand (& ) |
Parameter | Type | Description |
---|
from required
| integer
| Timestamp from when the aggregation task will be started. Format is a timestamp in milliseconds, for example 1652400000000 |
Example
Find below a request example in cURL language. In this case, we want to start the aggregation task with ID cc_myDomain:abcDE123
in the domain called myDomain
from a specific date indicated in the timestamp added to the URL. Learn how to authorize your request in this article.
Code Block |
---|
curl -H "standAloneToken:YOUR_TOKEN" -X PUT "https://api-us.devo.com/aggregations/v2/aggrtasks/myDomain/cc_myDomain:abcDE123/start?from=1652400000000" |
Expand |
---|
|
name required
| string
| Enter the name of the model you want to get the binary image of. |
ExampleFind below a request example in cURL language. Code Block |
---|
curl -X 'GET' \
'https://api.stage.devo.com/mlmodelmanager/v3/images/RRCF' \
-H 'accept: */*' \
-H 'standAloneToken: YOUR-TOKEN' |
|
Expand |
---|
|
Code | Description |
---|
200 | Returns the model file as an octet stream. Code Block |
---|
{
"metadata": {
"id": 123456,
"name": "TEST1",
"algorithm": "rrcf",
"version": "1.0"
},
"data": {
"dimensions": 1,
"shingle": 10,
"treeSize": 256,
"trees": 20
}
} |
| 404 | Model not found. | 500 | Returned when an error occurred internally in the server |
|